干扰环境下MIMO天波超视距雷达波形优化设计及处理研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:tang790330
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多输入多输出超视距雷达(MIMO-OTHR)作为一种新体制的天波超视距雷达,自提出以来便受到广泛关注。天波超视距雷达的工作频段存在着严重的射频干扰,仅依靠频率选择的方式避开干扰频段已不适合日趋复杂的干扰环境。因此,本文重点研究了MIMO-OTHR的射频干扰时域抑制问题。本文的主要工作和贡献如下:(1)MIMO-OTHR系统原理及信号处理方法本文首先建立了MIMO-OTHR信号模型及全数字的信号处理流程,包括接收波束形成、匹配滤波、发射波束形成和多普勒处理等,最后进行了仿真验证。(2)干扰环境下基于互信息的MIMO-OTHR波形设计本文从波形设计的角度研究了MIMO-OTHR的射频干扰抑制问题。该方法从信息论的观点出发,能充分利用目标的先验知识,以最大化互信息为优化目标,在恒模约束和相似约束下,采用MM算法进行求解。仿真结果表明,该方法比OFDMLFM信号有更好的输出SINR性能,且能在一定程度上控制距离旁瓣。该方法的优势在于有较好的干扰抑制能力,适合干扰强度较高的场景。(3)干扰环境下低旁瓣的MIMO-OTHR波形设计针对上述互信息算法距离旁瓣不理想的问题,本文提出一种低旁瓣的波形设计方法。该方法以干扰环境下的最优滤波器即白化滤波器为接收机,直接优化波形与白化滤波器之间的积分旁瓣电平(Integrated sidelobe level,ISL),同时还兼顾了输出SINR性能,优化问题分别采用ADMM算法和MM算法进行求解。仿真结果表明,所设计波形能有效抑制距离旁瓣,更有利于目标检测。该方法优势在于有较好的距离旁瓣特性,适合干扰强度较低的场景。(4)基于滤波器设计的MIMO-OTHR距离旁瓣抑制本文从接收滤波器设计的角度研究了干扰环境下MIMO-OTHR距离旁瓣抑制的问题。通过设计接收滤波器来抑制感兴趣区域的距离旁瓣,同时使得输出SINR最大化。距离旁瓣分别采用PSL和ISL来衡量,两种约束下的优化问题均可转化为二次约束二次规划(QCQP)问题,对于ISL约束还给出了计算复杂度更低的解法。仿真结果表明,所提方法能在抑制干扰的同时压低感兴趣区域内的旁瓣,并针对强目标旁瓣掩盖弱目标主瓣这一场景给出了距离-多普勒处理结果。
其他文献
分子通信(molecular communication,MC)通常定义为一种微观尺度下,基于生物或化学分子作为载体,完成生物细胞或纳米机间的信息传递的通信技术。目前,分子通信研究工作的主要障碍包括传输效率低、误码率高等方面,而传统通信中的多入多出(multiple-input multiple-output,MIMO)技术能够显著提高链路性能。因此,应用MIMO技术于分子通信已经成为该领域亟需研
无线电频谱资源作为国家战略性资源,在民用、军事等领域都起到了至关重要的作用,国内外都非常重视对频谱资源的管理。对频谱异常状态的检测是频谱资源管理监测的重要内容之一。传统的方法通过有监督的算法建立检测模型,可检测到的异常信号种类单一。由于实际场景下,信号发生异常的概率相对较小且原因众多,现有的模型方法无法适应。因此,本论文基于无监督的思想,结合人工智能的方法,对恶意电磁干扰、出现未授权信号、授权信号
现有雷达接收机参数固定、自动化程度低,不能适用于不同的工作模式,严重制约了雷达系统的处理能力,也不满足多功能综合一体化雷达系统的要求,针对于此,本文对可重构的雷达数字接收机展开研究,以便能在一个通用的平台上通过软硬件编程的方式实现不同雷达信号的接收。本文主要从两个方面展开研究工作,一方面是在研究可重构技术的国内外发展和应用情况的基础上,选择了Xilinx公司设计的全可编程片上系统芯片——Zynq,
随着无线电技术的迅猛发展,无线频谱资源愈加稀缺,为了提高频谱利用率,对宽带频谱进行监测、高效管理在雷达、认知无线电(Cognitive Radios,CR)领域都有着重要意义。依赖奈奎斯特定理的传统采样方式在模数转换器(Analog to Digital Converter,ADC)无法满足高速率采样时显得捉襟见肘,因此压缩感知理论(Compressed Sensing,CS)应运而生,随着CS技
多输入多输出超视距(Multiple Input Multiple Output over the Horizon,MIMOOTH)雷达由于其同时拥有MIMO雷达和OTH雷达的优秀性能,是近年来雷达系统的重要研究方向。本文在构建MIMO-OTH雷达仿真系统的基础上,研究了包括频谱共存的波形设计、TBD算法在MIMO-OTH雷达中的应用、基于多项式的电离层相位污染校正等内容,主要工作如下:(1)本文
近年来,在无线通信产业的带动下,半导体相关产业开始了飞速发展,随着晶体管特征尺寸的减小,平面型器件的短沟道效应愈发严重,其性能逐渐难以满足要求。因此,一种新型结构的鳍式场效应晶体管(Fin Field-Effect Transistor,FinFET)应运而生。相较于平面型器件,FinFET器件可以有效改善短沟道效应,增强栅控能力,提升器件整体性能,因此受到学术界和工业界的广泛关注。但是,关于低温
随着科学技术的不断发展,为了满足人们对于日常生活的需求,移动通信技术迅速发展。CMOS集成电路具有集成度高、小型化、成本低的优点,CMOS集成电路广泛用于通信、雷达、民用以及军用领域中。随着移动通信系统工作频率的增高,低相位噪声的振荡器的设计难度越来越大,为了解决这个问题,利用器件非线性特性的倍频器具有重要的研究意义。CMOS工艺的倍频器通过将低频输入信号倍频到高频输出信号的方式,来得到高频谱纯度
核塌缩式超新星会释放大量各种味道的中微子,平均能量10-20MeV,携带约99%的超新星爆发能量。这些中微子不但对研究中微子属性和超出标准模型新物理有着不可替代的作用,而且蕴藏了大质量恒星演化过程的丰富信息。因此,探测超新星中微子对粒子物理、天体物理、核物理、以及宇宙学都具有重要意义。到目前为止,对超新星中微子的实验研究不仅针对爆发中微子,还包括弥散在整个宇宙空间由过往超新星爆发产生的遗迹中微子。
外辐射源体制雷达是一种更能适应战场变化和具备强生存能力的雷达,在战场侦察中有十分重要的作用。相比传统地-空外辐射源体制,以空基雷达为辐射源的机载外辐射源雷达更能满足现代战争需求,但该体制下,杂波分布复杂多变,较强的距离相关性导致难以获得足够的训练数据。空时自适应处理(Space-Time Adaptive Processing,STAP)能有效抑制杂波并检测目标,但它对训练样本的需求较多,计算量也
随着无线通信技术的高速发展,低频段的频谱资源已经被WIFI、蓝牙等应用消耗殆尽,研究人员日益重视毫米波段的开发和应用,包括第五代移动通信、汽车雷达、气象雷达、临床医学、波谱学等。毫米波频段的电路具有极高的工作频率,因而对器件工艺的要求很高。诸如Si Ge、HBT、CMOS、Ga As、Ga N、In P等工艺在众多毫米波电路的应用中呈现你追我赶的态势。硅基工艺如CMOS,由于具有低廉的成本和超高的