受限情况下气体水合物的形成机理与控制

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:I_want_to
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
气体水合物是指气体分子和水形成的主客体结构。因在解决全球能源问题上具有至关重要的地位而引发广泛关注的可燃冰是甲烷分子与水在高压低温条件下形成的类冰状笼形水合物。然而可燃冰常处于深海,开发难度巨大,因此对可燃冰这种气体水合物的研究具有深远意义。过去几十年,人们在纳米级受限的(气体)水溶液中不断发现全新的纳米结构,譬如多边形冰纳米管、螺旋冰纳米管或是高压条件下受限于狭缝中的双层冰结构。目前国内外已有大量的学者利用计算机模拟发现在受限情况下,甚至能在常温常压下合成新型的低维甲烷水合物。2014年国内学者更是通过模拟发现了多种形态的准一维氢气水合物的存在,说明气体水合物在清洁能源方面的潜力变得更为巨大了。另外,还可以利用混合气体水溶液中不同气体分子形成准一维气体水合物的优先度不同实现气体分离净化和富集。我们利用分子动力学模拟方法(MD)系统地研究了轴向电场对单壁碳纳米管(SWNT)内准一维氮气水合物形成和分解的影响。研究发现,随着电场强度的增大,单壁碳纳米管中的氮气水合物发生了一系列的结构相变。与结构转相变对应,当施加的电场在1-2 V/nm的范围内,氮气水合物分解并释放氮气分子。而当电场小于1 V/nm或大于2 V/nm时,氮气分子均被限制在冰纳米管中,形成线状有序结构。我们的模拟表明,纳米管是一个优秀的微型气体储存容器,可以用来捕获气体分子,并借由电子信号敏感地触发控制它们的释放。这一现象的关键在于电场诱导水偶极子取向的变化,从而导致氢键网络结构的变化和水分子扩散系数的变化。我们的发现可能有助于理解限制在纳米尺度空间的水合物的电释放气体的机理。
其他文献
学位
学位
学位
波浪是造成每年众多船舶和海洋平台事故的罪魁祸首,在这些具有破坏性的波浪中,孤立波、lump波、怪波等由于结构的局域性受到人们的广泛关注。其中lump波具有在空间各个方向都是局域的特性,近些年来引起了越来越多的研究学者们的兴趣。研究发现lump波与孤子的相互作用会产生一些有趣的现象,当lump波与单孤子相互作用时,两种波发生分裂和聚变的现象。更值得关注的是,当lump波与孤子波对相互作用时,孤子波对
近些年,动态三维形貌测量技术在工业检测,影像医学,影视娱乐等方面应用更加广泛。基于条纹相位测量的动态三维表面成像技术在学术研究上逐渐成为热点。其中,相位测量轮廓术由于其在精度、速度、鲁棒性等方面的优越表现更是得到了深入研究。然而相移法有一个无法回避的问题就是相位截断问题。常用空间相位展开方法测量需要的图像数最少,但是可靠性不够高,而时间相位展开方法可靠性高,但需要更多数量的图像,测量时间长。还有一
热极化技术是目前打破石英玻璃宏观中心,诱导其产生二阶非线性系数(Second Order Nonlinearities,SON)最有效稳定的办法。紫外极化、电晕极化、电子轰击等其他极化方式,因其诱导的系数不稳定以及重复性不高被逐渐淘汰。近年来,光纤因其插入损耗低、成本低以及光学损伤阈值较高等优点在非线性光学迅速发展。光纤利用其自身固有的三阶非线性光学特性,在光开关、超连续谱的产生以及光脉冲等方面有
学位
水是人类和地球上的所有生物赖以生存的物质基础。在人类和其他生物体中,水是许多生化反应的反应物,并且绝大部分的活动都是以水作为载体发生的。因此,水对生物具有不可替代的作用和意义。碳纳米管由于其独特的结构和优秀的物理化学性质,在纳米领域内有广阔的应用前景。在恰当的参数设置下,水在碳纳米管中会形成稳定的一维水链结构,其在管内的输运和翻转规律有许多有趣的特点。研究水和其他生物分子在蛋白质通道内的输运规律,
压电驱动器因分辨率高、结构紧凑、控制方便、无电磁干扰等优点广泛应用于航空航天、光学工程、生物医学及超精密加工等领域。与其他类型驱动器相比,惯性压电驱动器具有分辨率高、结构紧凑、控制电路简单、行程大、成本低等优点,但也存在摩擦力/力矩难于调节、驱动能力不足、稳定性不高等问题。为解决上述问题,基于惯性压电驱动器工作原理,即惯性冲击力/力矩和摩擦力/力矩相配合实现定向运动,提出了两种摩擦控制式惯性压电旋
聚集荧光猝灭效应(Aggregation-Caused Quenching,ACQ)以及聚集诱导发光效应(Aggregation-Induced Emission,AIE)自发现以来就引起了研究者的广泛关注。传统染料ACQ分子被广泛应用于光学探针、生物成像等领域,但其存在的光漂白率高、易发生自猝灭、斯托克斯位移小以及信噪比低等问题,使其应用受到了很大限制。AIE分子被广泛应用于生物以及材料等领域,