论文部分内容阅读
在大规模科学工程计算的很多领域中,有很多问题都归结于大规模线性代数方程组的求解。研究大规模稀疏线性代数系统的求解方法已经成为大规模科学与工程计算中的核心问题之一,具有重要的理论意义和实际的应用价值。本论文对求解大规模稀疏线性代数方程组的一些迭代解法进行了深入研究。特别是,用矩阵分裂方法求解一些特殊结构的线性系统,如分数阶扩散方程,带位移线性系统,鞍点问题以及线性互补问题,并对算法的收敛性进行了分析和讨论。全文共七章,主要分如下五个部分:第一部分讨论用广义修正Hermitian和skew-Hermitian分裂迭代法(GMHSS)求解复对称线性系统。首先通过对MHSS迭代法进行推广,提出了广义修正Hermitian和skew-Hermitian分裂迭代法(GMHSS)。并建立了GMHSS分裂迭代法的收敛性理论。最后,通过数值实验验证所提出迭代算法的有效性。第二部分研究用带有转移Gr¨unwald格式的隐式有限差分法来离散化带有常数项系数的分数阶对流-弥散方程。由于所得线性系统的系数矩阵是正定矩阵,并且具有Toeplitz-like结构,用Hermitian和skew-Hermitian分裂法来求解此具有Toeplitz-like特殊结构的线性系统。在Hermitian和skew-Hermitian分裂迭代法中,需要求解两个线性子系统。这里利用Krylov子空间法来求解每一个线性子系统,并利用快速傅里叶变换(FFTs)来降低迭代过程中的矩阵-向量乘的计算量,同时,在用Krylov子空间法求解线性子系统时,可以利用如Strang’s和T.Chan’s预条件矩阵作为循环预处理子来加速Krylov子空间迭代法求解线性子系统的收敛速度。对算法的收敛性进行理论分析并给出预条件矩阵谱的性质,进而得出所提迭代法的超线性收敛性。第三部分讨论关于求解带位移线性系统序列的预处理更新技术问题,并提出一种新的修正策略来更新预条件矩阵。这种预处理技术是基于矩阵的分解,根据位移参数的不同取值而得到新的带位移线性系统中系数矩阵+所对应的预处理子,并进一步讨论所提预条件子的性质以及预条件矩阵谱的限的问题。该技术推广了文献[1]中预处理子的更新技术,数值实验表明,当位移参数在一个比较大的范围内取值时,所提出的更新预处理子技术是可行有效的。基于基模矩阵分裂迭代法,第四部分研究如何加速基模矩阵分裂迭代法。我们将其变形形式作为内迭代法,来近似地求解线性互补问题,并且具体给出所提新方法的不精确迭代过程。特别地,当系数矩阵为正定矩阵和+-矩阵时,进而分析了所提新方法的收敛性及其性质。通过数值实验,验证了所提出的新方法在适当条件下比基模矩阵分裂迭代法[2]具有较少的迭代步数和CPU,从而对于求解线性互补问题,本章所提方法更加可行有效。第五部分讨论关于鞍点问题的求解。首先提出一种快速有效的分裂法即广义Uzawa-SOR迭代法,该方法推广了USOR迭代法[3]。进而分析新迭代法对应迭代矩阵的特征值和特征向量的性质,并给出当参数在一定范围内取值时广义Uzawa-SOR迭代法的收敛性结果。数值实验表明所提出的迭代法有效地加快了USOR迭代法[3]的收敛速度。