论文部分内容阅读
随着社会的发展,较低比容量的商业石墨负极已无法满足日益增长的能源需求。我们尝试制备了高容量的硅基复合电极材料,希望能缓解硅的体积膨胀,又避免硅的不良导电性带来的容量衰减问题;使用熔盐锌热法制备了三维多孔碳材料,用于高倍率的钾离子电池负极。主要内容有:(1)为了改善硅的导电性,将硅与金属锗进行了复合。锗的导电性远大于硅,而且可以与金属锂形合金储锂。电极物质荷载量1mgcm-2左右时,纯硅和SG-4初始放电和充电容量分别为3216.2/2532.7和2780.4/1964.6 mAh g-1,库伦效率分别为78.7%和70.6%。与纯硅相比,硅/锗复合物表现出更好的循环性能。电流密度为0.6 Ag-1时,经150圈充放电循环后纯硅容量由3114 mAh g-1降至637 mAh g-1,SG-4 由 2040.3 mA h g-1 降至 1761.0 mAh g-1,容量保持率较好。电流密度分别为0.2,0.6,1.2,2.4,5 and 10Ag-1时对应SG-4比容量分别为2207.2,1899.2,1535.9,1103.6,800.6 和 542 mAh g-1。当电流密度为 2 Ag-1 时,经 500圈循环后SG-4比容量仍高达1415.5 mA hg-1。(2)研究了作为钾离子负极材料的碳,采用熔盐锌热法,以蔗糖为前驱体成功制备了三维多孔碳材料,并将其用作钾离子电池负极材料。所制备的三维多孔碳具有大量相互贯通的孔道,有效地缓解了电极在充放电循环过程中的体积效应,电解液对电极的浸润性得到提高,钾离子扩散路径缩短,因此循环稳定性和倍率性能得到提升。3-D多孔碳电极在0.5 Ag-1的电流密度下,经2500次循环后比容量仍可达174.6 mAh g-1,甚至在4.4 A g-1的高倍率下容量仍保持在170 mAh g-1,是一种极具前景的钾离子电池负极材料。(3)高压实验的研究往往与设备的研究是分不开的,目前,能够在高压下实现稳定压力并且适应各种化学反应体系的高压装置很少。试制了两面顶高压实验装置和稳定压力反应器,可以研究一些压力不高以及有液体反应物的体系。设计这种装置的目的是在化学反应过程中出现压力波动时及时稳定压力。装置设计和实验表明可稳定压力高压装置结构是可行的,具备良好应用前景。