氧化铈对双相LZ91合金性能的影响及第一性原理计算研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:ycboyyb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
双相镁锂合金具有良好的综合力学性能,可以应用于一些轻量化的领域,如3C电子、航空航天、交通运输等,但相比于已经大范围应用的镁铝系类合金,其强度仍有不足。因此对双相镁锂合金强度的改变是一个研究热点,其中可以通过制备含稀土元素的双相镁锂合金达到目的。本文主要采用LZ91双相镁锂合金作为原料,通过添加不同含量的氧化铈研究制备含稀土的双相镁锂合金可能性,以降低生产成本和保护环境,这是本文的主要研究意义。本文试验首先对氧化铈的添加方法进行了研究,主要对比了直接添加法和涂敷法两种添加方法时氧化铈的分布性,发现涂敷法有利于氧化铈在基体中的均匀分布;然后通过改变氧化铈含量制备出的不同LZ91-Ce O2复合材料样品,通过X射线衍射仪(XRD)、光学显微镜(OM)、场发射扫描电子显微镜(SEM)、以及纳米压痕测试方法对样品的物相组成、晶粒变化、微观组织形貌以及杨氏模量和显微硬度进行了观察,综合以上分析手段结果分析可知,SEM和XRD结果证明了氧化铈的添加改变了熔体的凝固方式,使得Mg Zn2、Mg2Zn3金属间化合物逐渐消失,而金属间化合物Mg Li Zn随着氧化铈的加入逐渐出现;对OM的结果分析发现组织的晶粒尺寸发生了改变且组织中棒状α-Mg晶粒逐渐增多;纳米压痕测试证明了显微硬度主要和二次相的析出以及α-Mg晶粒大小有关,且当氧化铈含量较少时,α-Mg晶粒大小对显微硬度的变化的影响更大。通过第一性原理计算方法,研究了界面(101)β-Li‖(0001)α-Mg电子结构以及弹性常数。电子结构表明Mg-Mg、Li-Li、Mg-Li这些原子之间都会产生化学键。Li-Li原子对通过轨道杂化形成了p轨道,此时形成的化学键以共价键为主;Mg-Mg原子对之间也会形成轨道杂化,且电荷发生了转移,形成了较强的共价键为主导的化学键合,Mg-Li原子对降低了界面结构的电荷转移程度,产生的共用电子对具有稳定的结构,说明(101)β-Li‖(0001)α-Mg界面具有较好的适配性。通过弹性常数及一系列机械性能的计算,发现原子的固溶作用能提搞材料的弹性模量,但同时对各向异性以及韧脆性也会产生影响。
其他文献
二维过渡金属碳化物或氮化物,称为MXenes,是一个新的二维材料家族。由于其优异的理化性能使MXenes可作为传感材料的理想平台,适用于多种应用。本文利用氢氟酸对碳钛化铝MAX相进行剥离得到MXenes层状材料,再通过水热处理得到了MXeness量子点,研究了量子点在检测组氨酸及四环素的应用,同时探讨了纳米片在生物材料应用中的潜在优势。(1)基于氨基官能化Ti3C2量子点用于血清中组氨酸的检测具有
学位
发展储能技术是应对日益枯竭的能源问题和严峻的环境问题的可靠且可行的战略。在多种储能系统中,锂离子电池(LIBs)凭借着其高能量密度、长循环寿命等优点,一直是最具吸引力和应用最广泛的储能装置。而水系锌离子电池由于其有更高的功率密度、更高的安全性和更低的成本被广泛关注和研究。水系锌离子电池的进一步发展也受制于其正极材料。本文从缺陷工程改性的角度出发,制备新型正极材料并阐述锌离子电池的储能机理,探索缺陷
学位
金属钽具有良好的高温性能和耐酸碱性能,在航天发动机和耐腐蚀设备领域被广泛应用。304L不锈钢成本低廉且应用广泛,被视为航空航天、耐蚀性管道领域的关键材料。实现Ta/304L异种金属连接能很好地优化结构设计,降低成本,满足应用需求。激光焊接是一种高能束焊接方式,具有光斑直径小,热输入量可控,焊接精度高,无需真空保护等优点,是实现Ta与304L可靠连接的首选方法之一。本文对0.6mm厚的Ta与304L
学位
镁合金作为新一代的生物医用植入材料,因其具有良好的力学性能和可降解性等优点而受到全世界的广泛关注。但是由于镁合金性质比较活泼,在人体内降解速率过快,生物相容性也不够良好,这些问题限制了镁合金在作为医用植入材料的临床应用。所以针对镁合金本身的改性和表面改性是当下研究的热门。锌元素的是人体必需的金属元素之一,适量的锌元素的加入可以一定程度上改善镁合金的耐腐蚀性;羟基磷灰石是一种具有生物活性的物质,可以
学位
锂离子电池(LIBs)以高能量密度,低环境污染和安全的工作电位成为当下各个领域使用最为广泛的储能装置。随着高功率设备的大规模普及,对于锂离子电池高能量密度的需求逐渐增大。然而,目前商业化的锂离子电池受限于石墨负极较低的能量密度,难以满足高功率设备的需求。因此,对于高性能阳极的开发是迫在眉睫的。氧化锡(SnO2)具有令人瞩目的理论比容量,被视为最有潜力的新一代阳极候选者。但是,SnO2阳极受限于导电
学位
镁锂合金具备非常优异的综合性能,比如良好的热导率,优良的电磁屏蔽性能和阻尼性能,所以在航空航天、汽车工业、等领域的应用非常的广泛,锂合金是目前最具有应用价值的超轻金属结构材料之一。而Mg-Li-Zn-Y合金由于具有双相α-Mg和β-Li相,这取决于Li的含量,并且具有三元Mg-Zn-Y相,其中根据Zn/Y比含量的不同,可能会产生准晶相Mg3Zn6Y,LPSO相Mg12Zn Y,和面心立方的Mg3Z
学位
铝合金材料由于力学性能好、密度低和价格相对便宜的优点常常被应用于化工、电子、建筑和交通等领域。随着科学技术不断地发展进步,越来越多的产业受限于材料性能而进入发展瓶颈期,诸多行业对铝合金性能期望不断提高,表现为材料需要兼具轻量化、优异的耐腐蚀性能以及力学性能等特点。添加增强相石墨烯纳米片(GNPs)后铝合金的力学性能显著提高,但却降低了材料耐腐蚀性能,而耐腐蚀性的降低则会在使用过程中负反馈到复合材料
学位
材料作为制造业的基石,是社会发展进步的现实基础和先导,其发展进步对汽车、航空、信息等产业都有着显著的推动作用。随着科学技术不断地发展进步,越来越多的产业受限于材料性能而进入发展瓶颈期,传统材料性能逐渐落后于先进制造业对于材料的要求。如何改进材料性能使其更好地适应行业发展要求就显得尤为重要。本课题研究了碳纳米管表面涂覆ZrO2陶瓷颗粒的包覆机理。采用高能超声辅助熔炼工艺制备了ZrO2@CNTs/2A
学位
本文主要研究了微量元素对再生ADC12铝合金组织与性能的影响,并对变质后的基体组织进行了定量分析,以揭示微合金化的作用机理。为进一步提高再生铝合金的性能,优选了铸态性能最佳的合金成分进行热处理,并采用正交设计进行工艺参数的优化,研究表明:稀土La、Ce、Y的添加对合金的α-Al二次枝晶间距及共晶Si相有明显的细化效果,枝晶由初始的无序粗大向有序颗粒状转变,且随着稀土含量的增加,细化效果越明显。当添
学位
纤维增强复合材料作为一种具有高比强度和高比刚度性能的先进材料,在二十一世纪得到了大力发展和广泛应用,特别是在航空航天、风力发电、汽车轻量化、建筑加固等一些领域,碳纤维复合材料的使用率更是不断上升,成为部分金属部件的良好替代品。但是,在一些复杂工况下这种纤维复合材料依然会面临一些疲劳失效和结构破坏的问题,这制约了纤维材料的推广应用。因此,对纤维增强复合材料的疲劳损伤特性、疲劳性能展开研究有助于加深对
学位