【摘 要】
:
随着人们认识到可再生能源的重要性以及其作为未来主要能源的巨大发展潜力,可再生能源在微电网中的渗透率不断增加。但可再生能源发电系统的间歇性、随机性和不可预测性等特点导致其在接入微电网时,会出现输出功率与负荷需求不匹配的情况,影响直流微电网内的功率平衡,造成直流微网无法稳定运行。目前解决上述问题最有效的技术手段是在微电网中部署储能系统,通过储能系统吸收/释放不平衡功率维持网内整体的功率平衡。混合储能系
【基金项目】
:
国家重点研发计划资助项目(批准号:2018YFB0905803)
论文部分内容阅读
随着人们认识到可再生能源的重要性以及其作为未来主要能源的巨大发展潜力,可再生能源在微电网中的渗透率不断增加。但可再生能源发电系统的间歇性、随机性和不可预测性等特点导致其在接入微电网时,会出现输出功率与负荷需求不匹配的情况,影响直流微电网内的功率平衡,造成直流微网无法稳定运行。目前解决上述问题最有效的技术手段是在微电网中部署储能系统,通过储能系统吸收/释放不平衡功率维持网内整体的功率平衡。混合储能系统由于集成了具有不同特性的储能器件,实现了优势互补,从而受到了广泛关注。本文围绕混合储能系统开展研究,着重研究由锂电池和超级电容构成的混合储能系统的控制方法和能量管理策略,具体研究内容总结如下:1.提出了基于无差拍控制的混合储能系统数字预测控制:该控制可以根据当前的电压和电流值在单个周期内计算产生最佳占空比,因此,直流母线电压可在不同干扰下始终保持稳定,并且混合储能系统的动态性能和直流微网的稳定性得到有效提升;此外,锂电池响应平均电流需求、超级电容响应瞬时电流波动,减少了锂电池的充放电次数、减小了其电流应力、延长其使用寿命;与传统比例积分(Proportional-integral,PI)控制相比,所提控制具有直流母线电压恢复速度快、过冲电压小和无需PI参数等优势;2.提出了基于荷电状态反馈的混合储能系统两自由度能量管理策略。引入了两个自由度,包括自适应高通滤波器截止频率fc和充放电系数kb,可分别根据超级电容和锂电池的荷电状态自适应地调节两者的充放电电流,避免过充过放、降低锂电池关断过程中的电流应力;接着,提出了混合储能系统的三种运行模式,包括功率分享模式、单电池模式和极限模式;通过所提能量管理策略,可实现直流微网在不同场景下的安全稳定运行、功率分享模式到其他两种模式的无缝切换和超级电容更快的能量恢复等;3.在实验室中搭建了简化的直流微电网平台,并利用TMS320F28069 DSP芯片实现对整个实验平台的控制;通过实际硬件实验对本文所提方法进行验证,实验结果与理论分析和仿真实验结果相一致,说明了本文所提混合储能系统基于无差拍控制的数字预测控制和基于荷电状态反馈的两自由度能量管理策略的有效性和优越性。
其他文献
近年来,由于氮化镓材料具有高电子迁移率、高电子饱和速率、宽禁带(约3.4e V)、高击穿电场等特点,使得Al Ga N/Ga N HEMT器件在电子器件领域具有很大的应用前景。随着应用需求的升级,器件的尺寸越来越小以及功率密度越来越大,导致器件的沟道温度上升非常显著,这对器件的封装提出了严峻的挑战。因此,为了提高器件的稳定性、可靠性和使用寿命,研究Al Ga N/Ga N HEMT器件的封装热特性
以灰霾和光化学烟雾污染为主要特征的二次污染是现阶段珠三角亟待解决的大气环境问题,而挥发性有机物(VOCs)作为臭氧和二次有机气溶胶生成的重要前体物,是持续改善空气质量的关键。VOCs不仅来源广泛,而且组分结构复杂,不同组分的反应活性差异显著,基于活性组分的精细化管控是现阶段更加有效的治理策略。为此近年来,国家以及广东省相继出台了一系列从总量控制到活性组分管控的政策,然而珠三角VOCs排放却依然上升
目前,中性点经小电阻接地系统已逐渐成为大中型城市配电网的主流接地方式,该系统配置的零序保护可有效检测并隔离低过渡电阻的接地类故障。但是,配电网架空线路的现场运行环境较为复杂,因雷击、外力破坏等因素造成的导线断线和接地类故障频繁发生。线路断线后若掉落在非理想导电介质上,也会造成继发的高阻接地故障。传统零序过流保护一般只能切除过渡电阻小于100欧姆的接地故障,对于配网高阻接地故障的检测灵敏度较低。若配
水中重金属对人类健康及生态环境危害巨大,在去除水中重金属的技术中,膜分离技术是一种简单、有效的技术。采用纳滤和反渗透技术处理重金属废水效果好,但能耗高、回收率低;微滤和超滤能耗低,但膜孔径较大,对重金属几乎没有截留作用。因此,开发一种高效吸附分离、低能耗的超滤等膜分离技术,对于去除水中重金属具有重要意义。本文以聚丙烯腈(PAN)为原材料制备PAN中空纤维超滤膜,并引入羧基、胺基和磷酸基等功能性基团
动力总成悬置系统作为整车关键的零部件系统,对整车NVH性能起到重要的作用。设计合理的动力总成悬置系统可以有效地提升整车的NVH性能。由于整车系统复杂、行驶工况多样,在建立理想仿真模型、模拟实际行驶工况、提升悬置开发效率等方面的研究仍存在许多不足。针对以上问题,本课题依托深圳某整车厂动力总成悬置系统的开发项目,以横置动力总成悬置系统为研究对象,重点研究悬置的仿真模型和优化设计方法,旨在实现较高精度的
随着科学技术和制造水平的迅速发展,磁性材料及器件被广泛应用于国防技术、航空航天、微机电系统和信息存储等多个领域。SmCo作为一种高性能稀土永磁材料,是非易失性热辅助磁记录介质的理想候选材料,其以薄膜形态沉积在元器件上提供强的局域磁场也可以满足磁功能器件集成化和微型化的要求。然而SmCo基薄膜存在相组成复杂、磁各向异性不易转变等问题,不利于其在磁功能器件上实现广泛应用。基于此,本文通过引入外场(温度
与传统刚性材料相比,柔性电子材料具有可变形性,与柔性物体、弯曲表面的贴合性好等优势而备受关注。其中,与人类活动息息相关的柔性可穿戴材料主要包括可穿戴传感器、柔性电路以及可穿戴储能器件等功能化模块,实现这些模块的全柔性化有利于实现真正意义上的柔性可穿戴。聚吡咯(PPy)作为导电高分子具有柔性好、成本低、制备过程简单等优点,在功能材料领域具有广泛的应用。本论文利用PPy界面聚合加强其与柔性基底的相互作
随着第五代通信技术的全面商用,对高容量、高速率的光纤通信网络需求不断增加,作为现代光纤通信网络中的重要组成部分,光纤放大器的增益带宽是影响通讯容量的一个重要因素,但由于Er3+离子的窄带发光,光纤放大器的增益带宽受到了限制。目前,各类光放大器还难以取代掺铒光纤放大器应用于实际光纤通信网络中。可实现宽带光放大的增益介质材料中,过渡金属离子掺杂发光材料和Bi离子掺杂发光材料的近红外发光较宽,但发光效率
随着海洋强国建设的不断推进,水声通信的应用范围也得到了扩展。传统低速率传输的水声通信技术已难以满足信息需要实时处理的领域,实现高速率的水声通信传输技术变得非常重要。超奈奎斯特(Faster Than Nyquist,FTN)技术可以打破奈奎斯特准则,使系统获得更高的传输速率,但会引入额外的码间串扰(Inter Symbol Interference,ISI),再加上水声信道的强时变多径效应,会导致