论文部分内容阅读
高速切削是解决难加工材料加工的最有效手段之一,而难加工材料的锯齿形切屑试验研究是高速切削基础理论研究领域的重要组成部分。本课题以钛合金和镍基高温合金两种工件材料为研究对象,采用切削试验和有限元模拟相结合的方法,对这两种材料锯齿形切屑的形成过程、演变机理及锯齿形切屑几何表征与切削用量关系展开了深入研究。锯齿形切屑是高速切削加工过程中切屑的典型特征,在切削过程中它不仅会导致切削力在切削稳态下高频率的波动,还会使刀具的磨损和破损加剧,从而降低刀具寿命和已加工表面质量。因此,对锯齿形切屑的实验研究有助于优化切削工艺,提高刀具寿命,保证已加工表面质量。首先,通过钛合金Ti6A14V和镍基高温合金的切削试验,对切屑的宏微观形态和切削力进行了研究分析。结果表明:切屑螺旋外径随着切削速度和进给量的提高而增大。切削力随着进给量、背吃刀量的增大而增加,随切削速度的增加而减小。建立了切削力的经验公式,并通过对比分析验证了其正确性。锯齿化程度、锯齿化步距随切削速度、进给量和背吃刀量的增加而增大,锯齿化频率随进给量的增加而减小,随切削速度和背吃刀量增加而增大;绝热剪切带随着切削速度的提高而具有从形变带到转变带再到带裂纹转变带的转化趋势。其次,利用ABAQUS软件建立了镍基高温合金的正交切削有限元模型。几何模型采用设置剪切损伤区而不单独设置分离线的方法,材料本构关系选用能正确反映材料本质属性的Johnson-Cook本构模型;通过切削力和切屑形态的对比分析,验证了该模型的正确性。最后,通过试验与模拟的对比分析,研究了锯齿形切屑形成过程及机理。结果表明:锯齿形切屑的演变过程由锯齿雏形、锯齿雏形到锯齿节块及锯齿节块到锯齿切屑三个形成阶段组成。温度弱化作用使剪切滑移变形始于切削层下部靠近刀尖区域,并呈尖峰状向切削层顶表面方向扩展;当刀尖处金属发生热塑失稳时,剪切滑移瞬间扩展至切削层顶表面形成了完整的剪切滑移窄带,锯齿雏形形成。剪切滑移窄带内的金属基本均处于热塑失稳状态,锯齿雏形将沿着整个变形窄带发生集中剪切滑移变形,形成锯齿节块。锯齿节块进入第二变形区后,集中滑移窄带内的金属仍处于热塑失稳状态,在前刀面的推挤作用下,锯齿节块将继续沿着集中剪切滑移带发生集中剪切滑移变形,直至离开第二变形区,完成了锯齿切屑的形成。