分解炉出口温度的神经网络预测控制问题研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:shtour
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
新干法水泥预分解生产技术逐渐成为当下水泥生产技术的主流方法,分解炉是水泥生产过程中的重要设备,其承担了水泥熟料90%左右的分解任务,分解炉能否稳定工作对水泥的产量和质量都有重要影响。本文首先论述了水泥生产对我国经济建设发展的意义,从研究现状出发,简要介绍不同学者在分解炉的建模和控制研究上使用的方法。针对预分解技术,简要介绍了悬浮预热器与分解炉工作机理,并论述影响出口温度的主要因素。在分解炉出口温度建模方面,传统研究方法大多利用经验法选择风(三次风)、煤(喂煤量)、料(生料量)作为研究变量,难以反映分解炉内部规律。本文使用生产现场实测数据,利用弹性网络(ElasticNet)方法既能够有效筛选变量又不存在过度压缩的特点对数据进行降维,消除无关因素对所要建立的预测模型的影响。建立基于弹性网络结合长短时记忆(Long Short-Term Memory,LSTM)神经网络的出口温度预测模型,讨论手动配置网络参数对模型误差的影响,建立对比实验,验证模型的有效性。针对网络参数需要手动配置验证的弊端,提出一种改进粒子群(Improved Particle Swarm Optimization,IPSO)算法优化的LSTM神经网络,利用IPSO算法对LSTM的参数进行优化,实现网络参数自动配置和验证。在分解炉出口温度控制方面,建立水泥分解炉出口温度的预测控制模型。使用LSTM神经网络结合预测控制的原理实现出口温度的神经网络预测控制,将深度学习网络引入到预测控制之中。设计以遗传算法作为优化策略的滚动优化控制器,以喂煤量为控制变量的控制模型。仿真实验结果表明,该控制模型能够有效控制分解炉出口温度。
其他文献
人类视觉系统所拥有的一项非凡能力是:仅通过单个视图推理出物体的三维形状。即使在缺乏立体视觉或运动的几何提示情况下,人类视觉系统也能够推断出详细的表面或完整的隐藏细节。因此,理解图像的三维结构是许多计算机视觉应用的关键,三维图像比二维多出一维的信息,更能反映物体的细节纹理和空间位置信息,使得模型更加真实合理。在计算机视觉领域中,基于单视图的物体三维重建是一个长期存在且具有挑战性的研究问题,科研人员往
随着科学技术的发展和人工成本的不断增加,能够实现自动化装配、移载、分拣等功能的AGV(Automated Guided Vehicle)的发展和应用越来越受到行业的重视。路径跟踪控制技术作为AGV技术中重要的一环,其控制精度直接影响着整体任务的执行,与此同时,随着工作任务越来越复杂,对AGV的跟踪控制精度的要求也越来越高。但是,在AGV进行路径跟踪任务的过程中易受负载、外部干扰、系统参数摄动等干扰
高光谱图像分类是高光谱图像研究的一个重要分支。已经有很多研究人员提出了高精度的高光谱分类网络。但是这些网络需要占用相当多的处理资源和处理时间,限制了深度学习技术以及高光谱数据的应用和推广。轻量级网络在最近几年成为深度学习领域的一个新热点,然而现有的轻量级网络多为普通RGB图像处理所设计,并不适合处理高光谱图像。针对高光谱图像分类问题的轻量级网络进行研究,本文的主要工作有如下三个方面:1)本文从GP
大气偏振模式作为地球的自然属性,其中蕴含丰富的光学特性分布信息,并且大气偏振模式在天空中稳定存在,即使在复杂大气环境因素影响下,大气偏振模式仍然呈现出一系列的时空连续分布规律,因此其在自主导航、目标探测等领域具有广阔的应用前景。为了解决在大气偏振模式实测实验中有时会出现数据缺失或数据集断档的情况,本文设计一种基于序列信息的局部大气偏振模式信息重构网络,并通过仿真与实测偏振数据进行实验验证本文所提方
强化学习是人工智能的重要分支之一,近年来受到了广泛的关注与研究。强化学习以奖励为唯一的指导,利用不断试错的方式,使得智能体在与环境的频繁交互中逐渐学习到能够获得最大累计期望奖励的最优策略。但当奖励分布稀疏或奖励分配不均时,便会影响智能体的训练,造成智能体收敛速度缓慢和训练不足等问题,即稀疏奖励问题和信用分配问题。本文主要贡献如下:(1)针对稀疏奖励问题,提出了一种基于情感的异构多智能体强化学习奖励
室内人体定位与动作识别一直以来都是当代人工智能领域研究的热点之一,针对这两方面已有的研究成果非常多,但是从成本、实现复杂度和人体隐私等方面去考虑,现有的一些人体目标定位和动作识别算法存在使用的仪器昂贵、环境要求太高和容易泄露生活隐私等问题。本文针对上面的问题提出了利用人体运动时热释电红外传感器输出的模拟信号来对人体进行定位和动作识别。首先热释电红外传感器成本和功耗都低,其次它采集的信号是人体红外热
从上世纪60年代起,特征选择作为一种降低特征数量、去除冗余特征和噪声数据的降维技术,已被广泛地应用于机器学习和数据挖掘的各个领域。传统的特征选择方法通过计算特征与类别变量之间的相关性进行特征选择,但是传统的特征选择方法忽略了它们之间的因果关系。因果特征选择方法通过学习类别变量的局部贝叶斯网络(Bayesian network,BN)结构,即马尔科夫边界(Markov boundary,MB),发现
柔性驱动器能够感知外界环境(电、光、湿度、磁等)刺激,将外部能量转换成机械能,产生特定的机械响应,具有结构简单、环境适应性强、性能稳定等优点,可广泛应用于软体机器人、人工肌肉、智能设备、医疗健康等领域。目前,多数柔性驱动器制备过程繁杂,可响应的外部刺激源单一,力学性能差。本文针对上述不足,选择合适的柔性智能材料,并结合其特点设计具有多刺激源响应的柔性驱动器,并产生快速大变形,实现良好的机械性能输出
随着水泥装备向大型化发展的需要,以预分解技术改进传统的水泥生产方式是当前我国水泥工业的发展方向。分解炉是预分解系统的核心部分,它承担了预分解窑系统中煤粉燃烧、气固换热和碳酸盐分解任务。碳酸盐的有效分解是制约水泥质量的重要因素,而它的有效分解需要一个相对稳定的温度,因此分解炉的温度控制对整个预分解系统的热力分布、热工制度的稳定至关重要。本文在目前国内外水泥分解炉温度预测技术研究现状的基础上,首先,基
电容式射频微机电系统(RF-MEMS)开关由于其具有体积小、性能优于其他同类型器件等优点在当今信息化快速发展的社会得到了广泛的应用,但此类开关的可靠性已经成为制约其快速发展的因素之一,因而对提高开关应用的可靠性也受到越来越多的研究者关注,其中,对于此类开关的寿命预测也逐渐成为研究热点之一。本文选择了影响电容式RF-MEMS开关寿命因素之一的弹性系数kb作为研究对象,研究在不同系数下开关的寿命长短。