论文部分内容阅读
致密砂岩油气藏储层质量严重影响其开发效果,准确识别及预测优质储层是实现致密砂岩油气藏高效开发的重要基础。传统储层表征方法虽然可以提供一套既有解决方案,但针对复杂致密砂岩油气藏的储层表征仍有众多问题需要解决。针对储层测井解释精度低、地震预测分辨率低等问题,本论文以川西坳陷沙溪庙组致密砂岩气藏为研究目标,以深度学习和机器学习为主要技术,充分挖掘岩心、测井、地震数据潜能,形成一套多尺度数据驱动的智能储层分类、测井解释、地震预测新方法,提高优质储层识别及预测的精度和工作效率。研究区沙溪庙组河道致密砂岩具有物性、孔隙结构强非均质的特征,综合岩相、成岩相对储层质量的控制,论文总结了六种岩石物理相。针对储层孔隙度、渗透率及流动带指标等物性参数的聚类分析,得到三类储层定量分类模型。岩石物理相与物性参数聚类结合得到沙溪庙组综合储层分类方案,准确识别出优质Ⅰ类和Ⅱ类储层。提出基于深度学习的智能测井解释新方法,建立了沙溪庙组统一的孔隙度、渗透率测井解释模型,与其他机器学习方法和分砂体方法相比,提高了测井解释的精度和效率,将多盲井渗透率预测平均相对误差由1.16降至0.53。提出了应用于深度学习机制解释的敏感性分析及类型曲线新方法,分析了沙溪庙组渗透率深度学习模型“黑箱”中蕴含的地质模式,认为深度学习能够学习到相对于其他方法更加复杂的非线性模式,可以从测井参数中学习到孔隙结构对渗透率的影响模式。针对地震岩性、优质储层预测,提出四种不同的深度学习反演模型:深度反演(DNN)、卷积反演(CNN)、小波深度反演(CWT-DNN)以及小波卷积反演(CWT-CNN)。分析认为,小波卷积反演结合了连续小波变换和卷积神经网络,可以从时频谱图中提取更多薄层信息,是一种高分辨率智能地震反演方法,在沙溪庙组岩性、储层预测中表现最佳,特别是对于中层和薄层预测。沙溪庙组5m以上河道砂体厚度预测平均相对误差由0.66降至0.34;5m以上优质Ⅰ类和Ⅱ类储层厚度预测平均相对误差分别由0.75和0.72降至0.34和0.15。论文形成一套多尺度数据驱动的智能储层识别及预测方法,在川西沙溪庙组应用并取得良好效果,论证了数据驱动的深度学习技术的可行性及潜力,在油气勘探与开发研究领域具有广阔的推广应用前景。