论文部分内容阅读
热电材料是一种能够实现电能与热能之间直接转换的功能材料,其提供了一种安全可靠、全固态的发电和制冷方式,具有广泛的应用前景。Te基热电材料中,Bi2Te3基化合物是室温下性能最好的热电材料之一,经过几十年的研究,块体Bi2Te3基材料的最高热电优值ZT徘徊在1左右。而PbTe基化合物是目前中温附近应用的最好的热电材料之一,据报道其最高热电优值ZT可高达2.2。随着纳米技术的兴起,近年来有关低维材料中取得高热电优值的报道不断出现。将材料的晶粒细化到纳米级别,可以增加对载流子和声子的散射,从而提到Seebeck系数,降低热导率,最后提高材料的热电性能。本文分别对Bi2Te3基和PbTe基热电材料作了广泛的研究。分别采用溶剂热/水热法、低温湿化学法以及循环环流法制备Te基纳米热电材料,对合成产物的形貌进行观察,并讨论了各自的反应机理;同时利用块体材料的纳米效应,实现对电声输运的有效调控,从而提高材料的热电优值。取得的主要成果如下:低温湿化学法合成Bi2Te3纳米颗粒过程中,系统中加入过多的络合剂不利于Bi2Te3的合成;分步加入还原剂NaBH4有利于合成出纯度较高的Bi2Te3;反应物浓度低,则Bi2Te3形核率也相应较低,在低浓度下合成出较纯的Bi2Te3纳米颗粒需要较长的时间。分别以纯Te粉和亚碲酸钠(Na2TeO3)为反应Te源,制备出Bi2Te3颗粒的形貌不同,前者形貌为纳米管,其直径在100 nm左右,管长为500 nm至1μm不等,壁厚则为30 nm左右,后者的形貌为一些聚集在一起的颗粒尺寸在30 nm左右的石榴状结构。低温湿化学法所合成出Bi2Te3纳米颗粒的尺寸比循环环流法制备出的要小,这可能和两种方法的反应温度不同有关系。对反应过程进行非原位观察和分析得出,化学合成Bi2Te3晶体的反应基本上可以分为原子反应过程以及离子反应过程这两种反应机制。三元合金对短波长声子的散射较强,能够降低热导率,材料的能带结构得到优化,因此具有更高的热电性能。用水热法在180℃的温度下制备出纯度较高的三元(Bi,Sb)2Te3纳米粉末,该粉末具有中空的结构,包含很多弯曲的薄片,这些薄片的尺寸在100-150 nm左右,壁厚则大概为20 nm。其块体的晶粒尺寸在几十至几百纳米之间,与未烧结前粉末的尺寸相差不大,这可能和粉末中空弯曲的形貌有关。在边界对声子的散射作用下,其热导率在室温下低达0.9 Wm-1K-1,最大ZT值在室温下达到1.28。分别用低温湿化学法和水热法在70℃和180℃的温度下合成纳米的Bi2Te3和Sb2Te3颗粒。放电等离子体烧结不同比例复合的Bi2Te3/Sb2Te3块体材料,在500 K的温度下,Bi2Te3和Sb2Te3以1:1复合热电材料的热导率低达0.7 W/(m·K)。真空热压烧结不同比例复合的Bi2Te3/Sb2Te3块体材料,Bi2Te3和Sb2Te3按1:1复合的材料具有相对较高的Seebeck系数和电导率,其ZT值在450 K的时候达到1.47左右。通过Sn掺杂有效提高了材料的电导率,2%Sn掺杂的试样在500 K左右的时候,ZT值达到最大1.4。微米Sb2Te3块体材料的热导率在室温下高达2.0 W/(m·K),复合了40%Bi2Te3纳米粉末之后,热导率在温室下就低达1.1 W/(m·K)。在综合了纳米效应对Seebeck系数、电导率和热导率的综合影响之后,复合了30%Bi2Te3纳米粉末的试样在很大的测量温度范围内具有相对较高的ZT值,在450 K的时候,达到最大值0.9。以醋酸铅(Pb(CH3COO)2)和Te粉为反应原料,在100℃的温度下用循环环流法反应48小时后制备出颗粒尺寸在100 nm左右的PbTe粉末。24小时取样得到的是球状PbTe的形貌,颗粒尺寸在50至75 nm左右,这可能是PbTe在形核和长大过程中的中间形貌。本文认为,化学合成PbTe纳米粉末的反应基本上可以分为原子反应过程以及离子反应过程这两种机制。通过不同的热压工艺把上述合成的PbTe纳米粉末热压成型,得到晶粒尺寸不同的四个纳米块体材料。经过孔隙率修正之后,在边界效应的作用下,材料仍然具有较低的热导率。由于具有较高的载流子浓度,在孔隙率和边界效应的双重影响下,块体纳米材料仍然具有较高的电导率。400℃热压制备的块体试样的ZT值在580 K温度的时候达到最高为0.8,这个值和之前所报道的二元PbTe合金的最好热电性能相接近。