碳纳米管间水分子扩散与操控的理论研究

来源 :中国科学院大学(中国科学院上海应用物理研究所) | 被引量 : 0次 | 上传用户:wangbohan1991
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
水是生命之源。水资源尤其是淡水资源,在人类的生存和可持续发展中具有决定性作用。虽然地球水资源丰富,但其中只有2.53%是可供人类饮用的淡水,并且这些淡水大部分是以冰雪的形式存在于南北两极、高山冰川、大陆冰盖和永久冻土层中。又由于淡水资源分布不均匀的原因,人类始终面临着淡水资源短缺的危机。而如何高效的将海水淡化是解决淡水资源短缺的关键。目前海水淡化的方法有多种,其中最常用的就是利用水分子在纳米管道中的输运来设计的超滤装置。纳米管道的研究中使用的材料有多种,在理论模拟和实验中常被使用的主要有碳纳米管、氮化硼、石墨烯、氧化石墨烯以及黑磷等。碳纳米管因具有超快速输运水分子的物理特性而经常被使用在海水淡化的研究中。而操控纳米通道中水分子的扩散以及提高水分子的扩散速度是高效海水淡化的重要手段。操控纳米管中水分子扩散速度最直接的方式是改变纳米管的表面性质,比如,在同心双壁纳米管中通过声子诱导的方式减小水分子与纳米管壁之间的摩擦力,进而增强水分子在纳米通道中的扩散速度;或者通过对纳米管进行电荷修饰,调整纳米管与水分子之间的相互作用,调节水分子在纳米通道中的扩散速度。最新的研究表明,通过控制两个不相连的纳米管,使水分子在空隙之间形成水桥,也能使水桥内水分子的扩散速度得到提升。在这篇文章中,我们运用分子动力学的方法,使用外加电场驱动水分子在两根不相连的纳米管之间形成一个悬空的纳米级水桥。我们发现,电场强度可以调节水桥的最大长度,水桥内分子的扩散速度可以通过调节水桥的长度进行操控,并且水桥内水分子的扩散速度最大可以增强到体相水的4倍以上。通过分析水桥的结构性质,我们发现扩散系数增加的原因是水分子之间相互作用能以及氢键个数的增加,而水分子之间相互作用能的增加以及氢键个数的增加是由于外电场改变了水分子偶极指向的分布引起的。除了使用水桥的方式操控水分子的扩散速度之外,我们还尝试通过调节同心双壁纳米管内外管的长度差对水分子的扩散速度进行操控。我们构建了三种构型:(?)L=0(构型Ⅰ),(?)L<0(构型Ⅱ,内管长度小于外管长度),(?)L>0(构型Ⅲ,内管长度大于外管长度)。和单管纳米管相比,构型Ⅰ管内水分子的毛细扩散速度减小了9.1%,构型Ⅲ管内水分子的毛细扩散速度增加了10%,构型Ⅱ管内水分子的毛细扩散速度增加了30%-46.5%。通过分析水分子的微观结构,我们发现水分子毛细扩散速度的提升是由水盒子内水分子和管口处水分子的势能差引起的。并且毛细扩散速度和势能差之间的关系可以使用指数形式描述vL(t)~e-((?)E/(kB)T)。因此,我们可以通过调节同心双壁纳米管内外管的长度差对水分子的扩散速度进行操控。我们的研究结果不仅能在海水淡化上有重要作用,还在水疗、纳米交换器、引擎催化剂、超滤作用、渗透能的传输等方面有极大帮助。
其他文献
衍射极限环是未来光源发展方向,它与第三代光源最主要的不同在于发射度更低,接近光子的衍射极限。发射度越低光的亮度越高,降低发射度有多种方法,其中使用multi-bend achromat(MBA)方法,提高单个单元中二极铁数量,能非常有效地降低发射度,使用7BA磁聚焦结构也成为了较多新光源与光源改造的选择。除此之外,使用antibend、纵向变梯度二极铁方法以及Robinson wiggler、横向
同步辐射光束线已经从高能量分辨发展到超高能量分辨,从微米聚焦到纳米聚焦,光束线的稳定性成为先进性能光束线的关键需求。对于硬X射线光束线,双晶单色器是核心设备,分光晶体的角度稳定性直接影响了聚焦光斑的位置稳定性以及出射光的能量及通量稳定性。本文结合上海光源工程实际,以液氮冷却双晶单色器为主要研究对象,发展了单色器运动参量及稳定性测试方法,研究了单色器工作波长在线检测技术,主要工作内容包括:研究了双晶
生物体内遗传信息的传递遵循中心法则,由DNA转录为RNA最终翻译为蛋白质,从而支撑生物体的整个生命活动,同时,遗传信息的异常传递也会造成多种疾病。生物体内遗传信息的传递由多种生物分子的相互作用调控,例如,负载遗传信息的基因组核酸序列可经由蛋白质凝缩为染色质,而染色质在相关蛋白的调控下产生拓扑重构,从而调控对应基因的转录活性;一些非编码RNA,如miRNA,可以以RNA诱导沉默复合体(RISC)的形
众多的天文学和宇宙学观测都表明了暗物质的存在,且是宇宙物质组成的主要部分。大质量弱相互作用粒子(Weakly Interacting Massive Particle,WIMP)被认为是最有可能的暗物质候选粒子。关于WIMP暗物质粒子的直接探测已经成为当今物理学的前沿课题。最近几十年来,国际上已有各种地下探测实验(例如XENON、LUX)展开了对WIMP暗物质的直接测量。位于中国锦屏地下实验室(C
核能作为一种能量密度高、洁净、低碳的能源,近年来受到了前所未有的重视并得到有序发展。核燃料循环是核工业的基础,以铀的高效利用为目的的先进核燃料循环体系,因回堆复用的需求,对后处理得到的铀产物的纯度提出了较高的要求。在燃料循环中的铀转化和乏燃料后处理过程中,常采用氟化挥发技术转化或者回收铀,得到的UF6产物中通常含有以MoF6为代表的较难净化去除的高挥发性金属氟化物。目前普遍采用精馏法和选择性吸附法
多肽或蛋白质在某些条件下会从其可溶形式转化为高度有序的纤维聚集体,这种普遍的现象在许多领域都非常重要。研究表明,某些神经退行性疾病,例如阿尔茨海默症(AD)、帕金森病(PD)、亨廷顿病(HD)和肌萎缩性侧索硬化症(ALS),是由多肽或蛋白的错误折叠和聚集引起的。多肽或蛋白自组装成有序的线性结构是许多生物系统的重要组成部分,并且在生物传感器、药物输送、催化、组织支架、二氧化碳捕获和逆转录病毒基因转移
电子枪是电子加速器中被加速粒子的源头,决定了整台加速器的束流性能。自由电子激光等大装置所要求的低发射度、高亮度电子束使得电子枪在国际上受到了广泛的关注和应用。而光阴极微波电子枪的出现和发展推动了自由电子激光、超快电子衍射等装置的发展,并将继续推动这些大装置向着更紧凑和更高效率的方向发展。随着科学研究的不断深入,未来极紧凑高亮度光源技术也对下一代光阴极微波电子枪提出了更低发射度、更低能散的需求。上海
熔盐堆是先进四代堆中唯一的液态燃料反应堆,由于液态燃料的特点使得熔盐堆中锕系核素和裂变产物的行为和分布对熔盐堆的设计、建造、运行和安全产生重要影响。中国科学院上海应用物理研究所(SINAP)正在开展钍基熔盐堆核能系统(TMSR)的研发,以研究锕系核素和裂变产物行为和分布及其对熔盐堆运行和干法分离影响为目标的熔盐反应堆化学成为一项亟待开展的重要工作。贵金属裂变产物是核裂变产物的重要组成部分。贵金属裂
波前是由等相位面形成的曲面,波前检测的实质是定量相位恢复。由于在可见光波段以及更高频段,探测器只能采集振幅信息。因此需要借助各种手段从光强信息中提取相位信息。在同步辐射光束线中,波前的性质由光源点和光路的设计决定,在传输中光学器件的缺陷和表面误差,将导致波前的畸变。常见的如反射镜的面形误差和姿态失调会影响其聚焦性能,组合折射透镜的波面误差也会影响其聚焦光斑强度分布,对某些实验存在不利影响。因此准确
夸克和胶子是标准模型里基本粒子的成员,宇宙大爆炸早期产生的夸克胶子等离子体在相对论重离子碰撞中也可以产生,因此研究夸克胶子等离子体可以帮助我们理解早期宇宙的起源和演化问题,同时也有助于更进一步地理解物质的基本结构。夸克胶子等离子体的存在,提供了相对特殊的环境,它为一些反常输运效应的存在提供了必要条件,比如手征磁效应CME、手征分离效应CSE、手征磁波CMW等效应。手征磁效应是指:强磁场存在的情况下