论文部分内容阅读
壁板是飞行器上很重要的结构单元。处于高速气流中的飞行器壁板,在弹性力、惯性力和暴露在高速气流中一个表面上的气动力相互作用将引发一种自激振动现象,即壁板颤振。非线性壁板的气动弹性颤振常被解释为极限环振动(LCO)。这样的一种结构失稳,通常会导致壁板的疲劳损伤,有时可能会导致灾难性的结构失效。在超音速飞行器结构设计的工程实践中,壁板具有一定的初始曲率,并且高马赫数下飞行器表面的气动加热效应也更明显,所以,对超音速流中受热平壁板和曲壁板的气动弹性稳定问题的研究,可以深刻理解壁板颤振的机理,找到相关设计参数对壁板颤振边界的影响规律,为估计壁板的疲劳寿命提供基础数据,对高速飞行器的壁板设计提供必要的理论依据,同时具有工程实用价值。本文基于von Kármán非线性应变-位移关系和气动力活塞理论,建立了超音速流中受热壁板的气动弹性微分方程。利用Galerkin方法,对超音速流中飞行器的受热平壁板和曲壁板非线性气动弹性稳定性进行了深入研究,分析热气动弹性系统的颤振边界特性以及不同的参数组合对系统颤振临界动压与稳定性的影响。主要研究内容和创新性成果如下:(1)利用Galerkin方法,将超音速流中受热二维平壁板的非线性气动弹性微分方程转化为非线性常微分方程。利用非线性系统在平衡点处的Jacobi矩阵的特征方程的系数构造Hurwitz行列式,依据Hopf分岔代数判据,将寻找非线性气动弹性系统分岔点的问题转化为求解一个实系数代数方程的根的问题。同时,证明了实系数代数方程的纯虚根与各阶Hurwitz行列式的关系,并解析推导了系统发生Hopf分岔和叉式分岔的边界条件,分析了参数平面上各区域内平衡点的个数及相应的稳定性。利用特征值理论和Runge-Kutta方法,数值验证了前述理论分析结果。分析了活塞气动力理论的非线性效应对超音速流中受热平壁板的颤振特性的影响。(2)飞行器的壁板蒙皮都带有一定的曲率。基于von Kármán非线性应变-位移关系,采用具有曲率修正项的一阶活塞理论气动力模型,建立了超音速流中的受热二维曲壁板系统的气动弹性运动方程。在不考虑初始几何曲率引起的静气动热载荷的情况下,利用Hopf分岔代数判据,研究了超音速气流中二维受热曲壁板系统的Hopf分岔,提出了曲壁板系统颤振临界动压及颤振频率的解析表达式,并评估了壁板初始几何曲率和温升对系统颤振临界动压值的影响。(3)针对超音速流中二维曲壁板系统的热气动弹性运动方程中存在的两项与曲壁板初始几何曲率有关、而与时间无关的静态载荷项,设定不同的来流动压、初始几何曲率和温升的参数组合,分别分析静态气动载荷、静态热载荷和静气动热载荷沿着曲壁板气动弦长的分布规律。利用Newton迭代法求解曲壁板静气动弹性变形的定常状态方程组,得到曲壁板静气动弹性变形特性;进一步,研究了静态气动载荷、静态热载荷及它们共同作用对曲壁板静气动弹性变形的影响。分别研究了不同初始几何曲率的曲壁板在静气动载荷和静态热载荷下,系统相应的静气动弹性变形的非线性代数方程组的平衡点的个数及其稳定性,确定了曲壁板静气动弹性变形随参数变化发生Hopf分岔和静态分岔两种失稳现象。(4)考虑到材料的弹性模量和热膨胀系数等参数随着温升而实时发生变化,弹性模量随着温度的升高而减小,热膨胀系数随着温度的升高而增大。假设弹性模量和热膨胀系数均为温升的一次函数,建立了超音速流中考虑弹性模量和热膨胀系数随温度变化的平壁板的气动弹性微分方程。给出了该系统发生静态分岔和Hopf分岔的解析边界条件,以及系统的颤振临界动压,并分析了参数平面上各区域内平衡点的个数及其稳定性。同时,设置弹性模量和热膨胀系数这两参数其中之一为常数作为对照组,与准定常温度场中的颤振临界动压进行比较。其次,针对气动弹性变形对气动热的影响,采用斜激波理论和三阶活塞理论来计算当地气流参数,Eckert参考焓方法和平板气动热公式计算气动热,有限差分法计算瞬态热传导,搭建出气动力-气动热-弹性耦合的超音速流中壁板颤振的理论和框架。由于风洞试验是测试试件气动弹性稳定性的重要手段,为了满足不同的实验要求,爆轰驱动激波风洞以不同的爆轰方式使激波压缩来产生高温高压气流。基于延时双头起爆驱动的方式,提出一种点火起爆的方式,可以降低爆轰产物形成的冲击波的相互干扰与影响。