A Study on Evolutionary and Lear ning Algorithms

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:shuixi000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
With the rapid growing demandsfrom industrial and academic communities,we need powerful tools to deal with the optimization problems or explore useful knowledge frommassive data for real world applications.Within computational intelligence and learn-ing field,threetypes of models,evolutionary algorithm (EA),extreme learning machine (ELM)and low-rank representation (LRR),are investigated in this thesis.The evolu-tionary algorithm is investigated from the perspective of solving complex optimization problems,while the perspective for the latter two models is tolearn effective features for pattern recognition.This thesis makesseveral contributions to intelligent information processing which can be summarized as follows.  Two improved evolutionary algorithms,hierarchical particle swarm optimization with Latin sampling (MA-HPSOL) and hybrid learning clonal selection algorithm (HLCSA),are proposed. The hierarchical topology in MA-HPSOL is effective forexploration and avoiding being trapped in local optima.Further,the newly de-signed Latin sampling can effectively refine the solutions.HLCSA is inspired by the idea that learning mechanisms can guide the evolutionary process in which the Baldwinian learning pool with multiple strategies can adapt to complex optimiza-tion problems with different characteristics.  Three extreme learning machine variants,discriminative graph regularized ELM (GELM),discriminative manifold ELM (DMELM) and unsupervised discrimina-tive ELM (UDELM),are proposed on the basis of considering the discriminative information or/and geometrical structureof data.Specifically,GELM enforcesthe training samples from the same class to have similar network outputs.DMELM further considers the discriminative information within the neighborhood of each data point.In DMELM,a unified graph Laplacian is designed to cover boththe within-class and between-class information.UDELM is an unsupervised extension of ELM by taking the structure and discriminative informationinto account,which greatly expands its applicability in dealing with unlabeled data.  Two low-rank representation variants,structure preserving LRR (SPLRR) and manifold LRR (MLRR) are proposed by considering the data manifold when con-structing graph for semi-supervised learning. SPLRR imposes two fold constraints on LRR to preserve the local geometrical structure and without distorting the distant repulsion property.MLRR explicitly takes the data local manifold struc-ture into consideration in which the manifold information is exploited by sparse learning other than constructing the graph by certain predefined measure directly.
其他文献
学位
随着科学技术的发展和人民生活水平的提高,人们对娱乐方面的要求也越来越高。作为信息的一种载体,图像及视频给人带来的感觉是最直接最丰富的,因此目前有关视频的研究和应用
伴随着半导体制造工艺的发展,单位面积内所能集成的晶体管的数目已经达到极限,单核处理器碰到了无法逾越的障碍,多核处理器逐渐变成人们研究的热门和重点。多核处理器分为同
网格(Grid)计算是近年来逐渐兴起的一个研究领域,Internet技术实现了硬件的连通,Web技术实现了网页的互连,而网格技术将实现的是Internet上所有资源的全面共享。在网格技术发
现代社会,随着计算机速度的提高及计算机图形学的发展,阴影计算已经从原来的不可能或者简单模拟变成当今的高效果实时模拟或者真实模拟。阴影渲染技术已经成为游戏引擎中不可
Web应用以互联网为基础平台,采用Web服务,为用户提供Internet服务的网络应用软件。随着Web技术的成熟与发展,Web应用被广泛应用,软件系统也越来越复杂,Web应用的安全问题愈发
数值方法是数学的一个分支,它的研究对象是利用计算机求解各种数学问题的数值方法及有关理论,其内容主要包括非线性方程(组)的数值解法,求解矩阵特征值,多项式求根问题等。迄
基于内容的图像检索技术的研究融合了非常多计算机领域的技术成果,比如说,有计算机视觉、图形图像处理、图像理解和数据库,它是技术成果的产物,是一种利用一幅图像所包含拥有
随着信息技术的高速发展以及互联网的普及,社交网络已经成为人们生活中不可或缺的一部分,作为一种新兴的社交平台,社交网络正在逐渐改变人们的交流习惯。在社交网络用户数与
基于榕树型拓扑的铁路无线Mesh网络结合了总线型和星型拓扑的优点,为将宽带Internet延伸到铁路沿线提供了一种更为合理的解决方案。但是,无线Mesh网络的传输性能随着无线跳数