【摘 要】
:
随着科技的进步,尤其是电子技术的长足发展,以及社会生产和生活的需求,计算机相关的技术对各种技术领域的涉及程度越来越广泛和深入,这就导致了以连续与离散行为共存为特点的混合系统的广泛使用。我们从形式化地角度来研究混合系统。目前混合系统的形式化分析、验证与模拟方法主要有两类,即演算推演法和混合自动机法,二者的理论都已经比较成熟,都要求将实例空间映射到理论空间,而后应用这些成熟的理论和方法进行分析验证。但
论文部分内容阅读
随着科技的进步,尤其是电子技术的长足发展,以及社会生产和生活的需求,计算机相关的技术对各种技术领域的涉及程度越来越广泛和深入,这就导致了以连续与离散行为共存为特点的混合系统的广泛使用。我们从形式化地角度来研究混合系统。目前混合系统的形式化分析、验证与模拟方法主要有两类,即演算推演法和混合自动机法,二者的理论都已经比较成熟,都要求将实例空间映射到理论空间,而后应用这些成熟的理论和方法进行分析验证。但是上述两个空间的映射,即建模方法,目前还比较混乱,并没有形成统一的有效框架,还处于具体实例具体分析的手工阶段。混合系统的研究对象包含控制系统、嵌入式系统和Cyber Physical系统等,这些系统的设计阶段都大量采用了成熟的层次化设计思路,并生成大量的层次化设计文档。那么快速准确地从层次化设计中得到混合系统形式化分析模型,并对此模型进行分析验证的工作就非常具有实际意义。本文研究将这种工业界常用的层次化设计,直接对应到混合系统形式化分析对象的方法。我们的依据是一种广泛采用的层次化设计概念模型[24],首先研究这种层次化概念模型的符号化表示,即层次化形式模型,而后基于此形式模型,探讨时段演算推演方法及混合自动机方法的语义,将此层次化混合系统形式模型映射为时段公式或混合自动机,最后按照(扩展)时段演算和混合自动机理论进行分析验证,并给出实例来阐述这种方法的可行性。
其他文献
可兴奋细胞是指能够响应外界刺激,并产生和向周围细胞传递动作电势的细胞。可兴奋细胞包括神经元细胞,心肌细胞等。这类细胞担当着生物电信号产生,传递和加工的功能。尽管不同的可兴奋细胞在功能和形态上差异很大,但在动力学行为上属于同一类。本文通过计算机模拟方法,研究了目前可兴奋性细胞动力学研究中的几个热点问题。主要分为两个方面。一方面是神经系统离子通道噪声对神经系统动力学行为的影响。另一方面是心脏中螺旋波的
近十年来,复杂网络结构和网络上各种动力学模型的研究成为非线性物理和统计物理的新热点。因为博弈模型贴近生活,各种博弈模型在复杂网络上演化问题已经是复杂网络研究中重要的一个研究内容。和传统的物理系统相比,博弈的演化问题展示出了更丰富物理现象。本文首先对复杂网络的研究现状和经典的博弈理论进行了介绍。其中先介绍了度分布、聚集系数等可以描述网络的结构的参数;然后对规则网络、随机网络、小世界网络和无标度网络这
数学是一门比较抽象的学科,而小学生的思维能力较弱,对于较抽象的数字计算不能很好地理解。因此,近年来小学数学教师也在不断寻找适合小学生的教学方式。将生活问题融入数学教学的方式便是当下小学数学教师所探索的方向,这一教学方式也取得了显著的效果,但随着这种教学方式应用范围的扩大,导致教学中出现了"伪生活化"的现象。本文就小学数学教学"伪生活化"及其应对策略进行探讨。
复杂孔隙结构储层一直是人们的研究重点,本文在前人的研究基础上对其孔隙结构和电性特征等进行了进一步的深入研究。基于电成像测井资料,本文结合实际地下储层特性,分析研究了不同储层类型和孔隙结构表征,及其在FMI图像上的特征。并基于成像测井资料,采用改进的Hough变换和本文新提出的正弦函数库方法实现裂缝的提取与描述;孔洞则充分分析其参数特征,结合先验信息,提高了Hough变换在孔洞提取中的效率和精度。为
高电荷态离子(Highly Charged Ion HCI)是核电荷数较高同时外壳层电子被大量剥离的离子。高电荷态离子的研究对天体物理、量子色动力学、原子的精细结构和原子质量测量等研究领域都有着重要的意义。由于高电荷态离子所携带的巨大势能,高电荷态离子也有望成为表面分析和表面改性的新工具。在医学应用方面,高电荷态离子易于被加速的特性,使其成为重离子治癌的首选离子。本文介绍了高电荷态离子的特性,产生
由于观测信息的不足,大气资料同化在很大程度上还要依赖于背景场(通常设定为预报场)及其误差的信息。背景误差的统计结构主要由误差协方差体现,其估计的准确程度在很大程度上影响着同化结果。传统的经验统计模型将预报误差协方差假设为定常(至少在一个季节内定常)、均匀和各向同性的,这和实际有很大距离,特别是对于中尺度模式更是如此。随着流依赖(flow-dependent)的背景误差协方差概念的提出,采用这种随流
本论文的工作主要分为两部分:建立了一套基于电阻阳极膜和微通道板的二维位置灵敏探测器系统。具体工作包括探测器支架的设计加工,电子学系统的搭建,噪声和干扰的控制,以及探测器性能的测试等。该探测系统在本实验几何条件下的角度分辨约为0.02度,远小于实验中大约1-2度测量角的大小。同时,本套电子学系统噪声干扰较小,工作状态下前放输出噪声在10毫伏之内,远低于前放输出的真实信号幅度。总之,本探测系统角度分辨
罗巴(Rota-Baxter)算子是积分算子的代数抽象和推广.本文以罗巴代数及与其相关的平均代数为核心,从算子、代数和operad三个角度研究了它们.全文共分为六章.第一章首先陈述了所研究课题的背景及发展概况;然后介绍了本文的研究动机和主要结果.第二章是预备知识,列举了本文所需的概念、术语和符号.第三章首先确定了sl(2,C)上所有权为零的罗巴算子的具体形式;其次,使用三种不同的方法,利用所获得的
为了加强科技成果的推广与应用,提升《江西医药》期刊所刊载论文的影响力,增强作者在业界的学术地位,本刊已许可中国学术期刊(光盘版)电子杂志社在数字优先出版和中国知网及其系列数据库产品中、万方数据在中国数字化期刊群及其系列数据库产品中、维普资讯在维普网中以数字化方式复制、汇编、发行、信息网络传播本刊所刊载的论文之全文,本刊特此声明。
近年来,在材料科学、生态学、流行病学、神经网络等学科的研究中导出了许多非局部扩散方程,并已得到了许多学者的关注.我们知道,用积分算子所表示的非局部扩散能够更加准确地描述所考虑的实际问题.然而,由于非局部项的出现导致方程的性质和动力学行为发生了改变,例如,方程的解半流不再是紧的以及解的正则性降低等.这给数学理论的研究带来了新的困难.在非局部扩散方程的研究中,行波解是一个重要分支.行波解可以很好地描述