纳米多晶Al力学性能与变形机制的分子动力学模拟研究

来源 :兰州理工大学 | 被引量 : 0次 | 上传用户:life11231
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纳米多晶金属材料相比于宏观块体材料,其力学性能更加优异,因此引起世界各国学者的广泛关注,并对其进行了大量的相关研究。本文通过分子动力学模拟研究了纳米多晶Al在拉伸加载时,不同的平均晶粒尺寸、孪晶含量、温度以及合金元素Ti对纳米多晶Al力学性能与变形机制的影响。主要获得以下的结论:(1)对于不同的平均晶粒尺寸,模拟表明,屈服应力与晶粒尺寸的关系可以用经典的Hall-Petch关系来描述。然而,当晶粒尺寸小于5.91 nm时,屈服应力与晶粒尺寸的关系转变为“逆”Hall-Petch关系。这种反比关系主要与模型弛豫结束后的位错密度有关,屈服应力变化趋势与位错密度变化趋势一样。此外,晶粒内部生成的层错四面体结构随着晶粒尺寸的减小而增大,随着塑性变形的进行,层错四面体结构会演变为更加复杂的层错结构。随着位错的运动,晶粒内部会产生位错缠结。(2)在平均晶粒尺寸为5.67 nm的纳米多晶Al中加入孪晶,计算结果发现,在300 K、较大的孪晶界间距下,主要变形机制为Shockley分位错在晶界处形核并成倍增加,该分位错的柏氏矢量为b=6112。随着孪晶界间距减小,孪晶界也成为Shockley分位错的形核位置,从而导致屈服应力下降。孪晶界的移动与消失,主要由于大量的分位错在孪晶界处形核所导致,并且随着塑性变形的增加,产生新的变形纳米孪晶。当温度变为600 K时,温度升高使得晶粒内原子运动加剧,原子间的结合力减弱,导致屈服应力与杨氏模量减小。晶界与孪晶界的运动是高温下纳米多晶Al的主要变形机制。相比室温300 K,在600 K中位错滑移和新产生的变形孪晶随温度升高而减小。同时,高温会使得纳米多晶Al中无序原子的含量增加。(3)在平均晶粒尺寸为5.67 nm的纳米多晶Al中随机加入不同含量的合金元素Ti。计算结果发现,加入合金元素Ti增加了纳米多晶Al的抗拉强度,并且纳米多晶Al中产生的位错类型主要为Shockley分位错。随着拉伸加载的进行,在纳米多晶Al中分位错形成堆垛层错结构。在纳米多晶Al中的变形机制除去堆垛层错之外还有位错缠结、层错四面体与Lomer-Cottrell锁等变形结构,但相对于纯的纳米多晶Al结构,这些结构的产生相对少了许多。因此,合金元素浓度是影响纳米多晶Al的拉伸强度和塑性破坏机制的重要因素。
其他文献
由序/熵调控设计得到的中、高熵合金和非晶合金,打破了传统合金的设计理念,并在性能上不断取得突破,具有重要理论研究意义和工业应用潜力。本文采用熔剂包覆法+磁悬浮熔炼水冷铜模负压吸铸法,由工业级原料通过Fluxing技术制备出具有优异力学性能和磁学性能的新型亚稳态合金,打破传统的采用高纯原料以及真空熔炼等的合金制备的方式,探究不同碱度包覆剂对于非晶复合材料除杂效果、组织和力学性能的影响,分别添加稀土元
Al/Cu复合结构的制造中,由于其异种材料间熔化特性、热物理性能等差异使得实现其有效、可靠的连接是目前急需解决的关键问题。同时接头处界面行为对性能具有重要影响,所以对其界面行为进行多角度多方面深入分析具有重要意义。本文在传统电弧焊低成本、可操作性强的基础上,从工艺方法改进和界面调控方面提出了添加SiO2纳米粉末AC辅助Al/Cu等离子弧熔钎焊实现了成形及力学性能良好的Al/Cu异种金属接头。同时通
在自行原创设计的动态管流腐蚀设备中,利用失重法、SEM、EDS、XRD和XPS等手段全面分析了在CO2/水气液两相泡状流条件下腐蚀时间、CO2分压、CO2气相流速对20#无缝钢管的腐蚀速率、腐蚀产物形貌及腐蚀产物成分的影响。研究结果表明:(1)在不同压力条件下,随时间延长至3h时腐蚀速率均先降低到最小值,后时间增大至5h时腐蚀速率出现峰值,5h后腐蚀速率均呈缓慢降低的变化趋势;腐蚀试样表面黑灰色覆
传统电火花沉积设备在沉积过程中,“阳极粘连”、拉弧等现象常有发生,且沉积设备大多由人工手动操作,人为因素对沉积层质量影响较大,手持沉积枪不适合进行大面积沉积工作,工作效率低下,影响沉积层质。因此采用超声加工与电火花沉积技术相结合,通过在工具电极上加载超声振动,利用超声波振动产生的热效应、机械效应,提升沉积层质量。本文设计了超声波复合电火花沉积自控平台,在S136模具钢表面制备WC-10Co沉积层,
从偏滤器部件的结构设计看,铜/钢异种材料“管对管”连接是WEST、ITER以及DEMO偏滤器部件制造的必需工艺,该接头是冷却水的压力边界,一旦开裂将会导致冷却水的泄露,极大威胁装置安全。首先,以WEST工程中的实际需求为导向,研究了CuCrZr/Inconel 625/316L电子束熔化焊接接头的微观组织和力学性能。在实际生产中,管-管焊接是在热等静压之后进行的。为了模拟构件生产制造的实际情况,采
NiCrAlFe(卡玛)合金作为Ni-Cr基精密电阻合金的一种,因其具有电阻率高、电阻温度系数小、对铜热电势低及良好的室温成形性等优点,被广泛应用于制作各种测量仪器的精密电阻元件及应变片。当其应用于电子行业时,通常需要制成箔片或薄带状,一般采用塑性变形和热处理相结合的制备工艺。在塑性变形及后续热处理过程中,合金的组织、晶体缺陷及织构类型等都会发生变化从而对合金电学性能产生较大影响,而目前关于冷变形
A-TIG焊(Act ivating TIG welding)是一种既能保证焊接质量,又能显著增加熔深的高效焊接方法,但需人工涂敷活性剂,难以保证涂敷质量,且不利于自动化,且对于铝合金,以往通过活性气体引入O的焊接方法并不适合这类金属的焊接。针对上述问题,本课题组提出粉末熔池耦合活性TIG焊(PPCA-TIG焊,Powder Pool Coupled Activating TIG welding)
针对电弧增材制造过程中严重的热积累而导致的成形质量差、尺寸精度低以及堆积完成后成形件内部存在较大残余应力等问题。本文提出随弧激冷电弧增材制造方法来改善电弧增材制造过程中严重的热积累以及降低成形件内部的残余应力。采用数值模拟与试验相结合的方法来研究随弧激冷对电弧增材制造过程中温度场和应力应变的影响。最后再对堆积层的组织性能进行分析,研究随弧激冷对电弧增材制造成形件显微组织以及力学性能的影响。基于AN
6N01铝合金具有中等强度、良好的耐蚀性、加工性及焊接性,广泛应用于高速列车和地铁列车的侧墙、盖板、车厢隔框等。6N01铝合金具有较高的热导率和线膨胀系数,当试件发生熔化前大量的热量已传入周边母材,所以焊接时需要较高的热输入,而过高的热输入导致焊接接头残余应力大、软化严重、力学性能低。采用K-TIG焊接工艺具有焊接接头质量优良、生产率高,成本低的优势。因此,研究6N01铝合金K-TIG对接接头的工
Cr20Ni80合金是一种电热合金,室温和高温下均为奥氏体,由于其电阻率高且稳定、力学性能优异、使用寿命长,在机械、冶金、军工等行业作为发热元件被广泛应用。点缺陷对合金的电性能和力学性能的影响很大,它的存在会破坏晶体点阵的周期性,使得电子产生强烈散射,因而影响合金的电阻率,并且点缺陷会改变合金中原子间的键合强度,引起合金力学性能的变化。但是点缺陷只有原子尺度大小,很难通过实验进行直接观察,而第一性