论文部分内容阅读
本文对排量为2.8L的四缸柴油机的原旋风式油气分离器的气相场和气液两相流场进行模拟分析,结果表明:该旋风式油气分离器具有的优势是压力损失很小,且对于小粒径油滴有比较明显的分离效果。但由于结构上的限制,高速的旋流运动无法充分展开,油滴在分离器内部的运动路径被大大缩短,总的分离效率较低,且分离效率随窜气流速的降低变化明显,最佳的分离效果只存在于一定的窜气流量下。为了进一步提高分离器的分离性能,在考虑了柴油机空间布置的问题后,重新选配设计了一款迷宫式油气分离器。对新选配的迷宫式油气分离器进行气相场和气液两相流场计算,得到其在窜气流量为70L/min时,进出口压力差为457Pa,相比原旋风式分离器压力损失大大增加,但仍保持在合理范围内;分离效率为87%,相比原旋风式分离器提高了11%,新选配设计的迷宫式分离器分离性能优于原旋风式分离器。该迷宫式分离器的圆柱形多孔板与挡板组成的高速碰撞区域是最主要的分离区,尤其对大粒径油滴的分离效果明显,但是压力损失较高。长方形挡板的组合布置不仅延长了油滴的运动路径,且使窜气在加速过程中形成了涡流运动,提高了油滴碰撞分离的概率。根据迷宫式油气分离器的分离特点对其结构进行改进,对设计的两个改进方案进行模拟计算。根据对计算结果的分析,选择方案M20作为最终的改进方案,其分离效率为90.65%,相比原方案提高了4.2%;压力损失为387Pa,相比原方案下降了15.3%。迷宫式油气分离器多孔板的流通面积直接影响压力损失和窜气流速的大小,是迷宫分离器设计改进的重点。本文通过柴油机油气分离器的选配设计研究,获得旋风式和迷宫式油气分离器的流场分布特点和分离性能特点,为旋风式和迷宫式油气分离器分离性能的提升提供了一定的参考和依据。