论文部分内容阅读
原子与光场的相互作用已经成为量子光学中重要的研究课题,其中原子与光场相互作用系统的量子特性引起了人们广泛的关注。熵可以作为原子与光场相互作用过程中信息量度的重要手段,它不仅可以灵敏的对量子态纯度进行操作测量,而且还可以被用于解释量子系统的动力学行为,同时也是描述原子与光场相互作用过程中纠缠程度的重要工具,在量子信息领域有着广泛的应用。本文研究两个耦合∧型原子与双模压缩光场相互作用过程中的量子特性,以及两个运动的耦合∧型原子与单模压缩光场相互作用系统中原子间耦合强度、原子运动和场模结构参数印的变化对光场(原子)熵的影响,主要包括以下几个内容:第一章、第二章、第三章介绍光场与物质相互作用过程中的一些基本理论和原子与光场相互作用的半经典理论和全量子理论。介绍了量子熵和量子特性的概念及其基本理论,为下面章节的研究做理论准备。第四章研究了两个耦合∧型原子与双模压缩光场相互作用过程中的量子特性,讨论了共振和远离共振两种情况下原子初始态、压缩参量、原子间耦合强度和原子与光场间的失谐量对系统量子特性和光场熵的影响。结果表明:(1)随耦合系数Ω的增大,原子与原子间的关联和相互作用增强,原子与光场间的关联和相互作用减弱,光场驱动原子跃迁难度加大,熵逐渐减小,振荡频率减小;随着光场失谐量△的增大,光场与原子间的关联和相互作用也减弱,使得熵逐渐减小,但是振荡频率增大。(2)原子间耦合强度和原子与光场间的失谐量的改变对量子特性有明显的影响,非经典特性频繁出现。第五章利用全量子理论研究了单模压缩态与两个耦合的运动∧型三能级原子相互作用过程中光场熵的演化规律,将对三能级原子纠缠态的制备产生有帮助,研究结果表明:随着原子间耦合强度的增大,原子与原子间的关联和相互作用增强,原子与光场间的关联和相互作用减弱,光场驱动原子跃迁难度加大,光场熵值逐渐减小,即熵的大小主要取决于原子间耦合强度;原子运动和场模结构参数印越大,原子与场退纠缠越频繁,振荡频率越大,即熵的振荡频率主要取决于原子运动和场模结构参数印.第六章是对本文工作的总结和展望。