论文部分内容阅读
本论文探究了如何利用煤气化细渣中的高残碳量含有的燃烧热来改进固相反应活化残渣实现低温、低能耗的活化工艺,并用于提取铝硅等有效成分。提出一种简单易控的工艺来降低能耗并考察了相关因素;以煤气化细渣为原料制备了高比表面二氧化硅,并对制得的样品进行了一系列的表征;以煤气化细渣为原料制备了SBA-15以及掺有活性离子的Fe-Al-Ti-SBA-15。煤气化细渣中氧化铝主要存在于莫来石晶格,经Na2CO3(或CaCO3)在通氧状态下焙烧活化,用盐酸溶出熟料中的铝后,测定其铝提取率。最佳焙烧条件为:原料配比(细渣/Na2CO3) 1.9:1,在惰性气氛中升温至350℃,在通氧状态下反应10min,氧化铝提取率89%;原料配比(细渣/CaCO3) 2:1,在惰性气氛中升温至700℃,在通氧状态下反应15min,氧化铝提取率89%;以煤气化细渣作为硅源,CTAB和Trion-X-100作为混合模板剂制备了高比表面二氧化硅。利用SEM、TEM、比表面测试、红外光谱以及X射线粉末衍射对所制得的样品进行了一系列表征。样品的比表面积为1248~1573m2/g,平均孔尺寸2nnm,二氧化硅纯度高达99.6%。以煤气化细渣作为硅源,P123作为模板剂,在低pH(0.45)值条件下制备了高度有序的六方介孔材料SBA-15。利用调节pH值的方法将煤气化细渣中的Fe、Al、Ti引入到SBA-15中。当pH值调到1.5时,通过27Al固体核磁分析确定铝以四配位的形式掺入到介孔材料的骨架中,Fe、Ti通过紫外可见漫反射分析确定也以四配位的形式掺入骨架中。随着pH值的增大,铝不仅以四配位掺入到骨架中,还有一部分以六配位形式掺入,铁不仅形成骨架内铁物种还形成了骨架外的不同铁物种。