论文部分内容阅读
基于符号计算,本文研究了非线性系统中可积系统与混沌系统中的若干问题,工作主要分以下两个部分:一、分别从延拓结构方法、Riccati型伪势与Bell多项式三个方面研究了非线性发展方程的可积性质:Lax对、自-Backlund变换、守恒律、奇异流形方程与双线性形式等,并开发了计算非线性发展方程双线性形式的一个程序包;二、构造了分数阶的Lorenz标准型与一个新的四维混沌系统,并给出了它们的数值模拟。
第一章,介绍了本文所研究内容的理论背景与发展现状,其中包括非线性系统的可积性、延拓结构理论、符号计算与混沌系统。
第二章,改进了延拓结构理论并将其应用于Qiao方程,得到了该方程的两个势与两个伪势,从中得到了新的反散射谱问题、Lax对与无穷多守恒律。将延拓结构理论扩展至忮系数非线性发展方程,并应用于变系数KdV方程,得到了变系数KdV方程的Lax对与Pfaffian形式。
第三章,构造了广义五阶KdV方程的Riccati型伪势,得到了广义五阶KdV方程在该条件下的Lax对与奇异流形方程。在三种条件下,得到了广义五阶KdV方程的新奇异流形方程与自-Backlund变换,其中CDG-SK方程、Lax方程与KK方程分别包含在这三种情况之中。
第四章,基于Bell多项式,构造了得到非线性发展方程的双线性形式的机械化算法,并在Maple上给出了算法实现程序包。该程序包首先将非线性方程进行无维化,然后将无维化后的方程表达成P-多项式的线性组合,从而给出其双线性形式。并以实例验证了该算法的有效性和可靠性。
第五章,构造了分数阶的广义Lorenz标准型与一个新四维混沌系统,分析了其动力学性质,并给出了数值模拟。通过选择不同的参数可以分别得到分数阶的经典Lorenz系统、Chen系统、Lü系统、Shimizu-Morioka系统与双曲型广义Lorenz系统。
第六章,对全文的工作进行了总结和讨论,并对下一步工作进行了展望。