论文部分内容阅读
得益于低地球轨道(Low Earth Orbit,LEO)卫星网络具有传播损耗低、数量级大、较少受地理环境的限制、提供全球无缝覆盖等优点,卫星网络和地面网络紧密结合的星地融合网络被提出,并且在工业界和学术界都受到了广泛的关注。随着星地融合网络可承载的业务不断增多,构建实时、高效、均衡的路由算法直接关系着网络服务质量(Quality of Service,QoS),是星地融合网络发展的必然要求。但是,LEO卫星网络的拓扑结构动态变化频繁,资源与流量分布不均衡给星地融合网络中路由算法的设计带来挑战。目前已有的研究大多数是将地面网络资源和卫星网络资源分开考虑的,往往由两个网络各自的路由结果组合而成,难以满足用户的端到端QoS需求,并且是在网络已经发生拥塞时才被动地执行流量控制措施,没有充分利用卫星流量的历史数据。针对当前星地融合网络路由算法存在的不足,本文提出基于流量预测的负载均衡与QoS路由算法(Load Balancing and QoS Routing basedon TrafficPrediction,TP-LBQR)。首先,通过预测卫星节点在下一时刻的流量,反映卫星负载情况,从而选择更可靠的下一跳路由。由于传统的流量预测算法在预测精度与效率上都有所欠缺,本文提出了基于堆叠降噪自编码器(Stacked Denoising Auto-encoder,SDAE)的深度学习流量预测算法,并且考虑到卫星节点的计算存储能力有限,提出了卫星-地面站协同流量预测的边缘卸载模型(Cooperative Traffic Prediction Model,CTPM),最小化模型预测所需时延。其次,在星地融合网络中引入软件定义网络(Software Defined Network,SDN)可以有效地解决异构网络的管理问题,使得端到端路由成为可能。因此本文建立了基于SDN的星地融合网络场景,并根据LEO卫星特点定义链路代价函数,利用流量预测结果定义负载权重因子,然后采用蚁群算法对路由进行求解,得到满足负载均衡与QoS需求的端到端路径。最后,本文基于TP-LBQR路由算法,设计并实现了一个仿真验证系统。首先对该系统进行了需求分析,并设计了系统架构和数据库,在此基础上介绍了各模块的详细设计,包括网络拓扑展示模块、流量预测模块和路由选择模块。前端使用Vis.js绘制可视化拓扑图,jQuery实现前后端ajax交互,以及JSP和CSS/HTML提供可视化界面与用户交互功能,后台开发采用SSM框架,数据库采用MySQL。最后介绍了系统的测试情况,通过功能测试和性能测试,保证系统的稳定性与可用性,表明该系统能够帮助运维人员在星地融合网络中科学地规划路由。