论文部分内容阅读
随着生活水平的提高,人们对乘坐舒适性和行驶安全性的要求越来越高,汽车平顺性和操纵稳定性已成为其在市场竞争中两项重要性能指标。和钢板弹簧悬架车辆相比,空气悬架车辆不仅能提高行驶平顺性,还能改善轮胎接地性和车辆的操纵稳定性,减少车辆对路面的损坏,加强对货物的保护。本文中的ECAS客车,是在保证操纵稳定性的前提下,提高行驶平顺性。因此,对ECAS的充放气特性、匹配和控制研究成为了一项很有意义的工作。1.阐述了空气弹簧和空气悬架的工作原理和特性,基于空气弹簧有效容积、内部气体压力、有效面积和承载质量等工作参数,运用热力学基本理论,进行了空气弹簧内部气体状态分析,建立了空气弹簧非线性弹性模型。2.运用牛顿法建立了1/4车二自由度和整车八自由度的空气悬架客车的数学方程和动力学模型,并对整车模型进行频谱分析。针对整车模型,以座椅处垂直方向加权加速度均方根值作为汽车行驶平顺性优化目标,以前后悬架阻尼系数为设计变量,以悬架阻尼比、动行程和车轮动载荷为约束条件,对空气悬架的刚度和阻尼的匹配进行了寻优,优化结果改善了车辆平顺性和轮胎动载荷。3.将固定容积容器与变容积容器的充放气特性应用于ECAS客车的充放气研究,并进行了空气弹簧高度位置保持不变+变载工况和高度位置切换+定载工况的充放气理论推导。高度位置保持不变+变载工况通过理论推导得到了空气弹簧刚度—充放气时间(电磁阀开关时间)的关系曲线,并拟合出相应的关系函数。空气弹簧高度位置切换+定载工况通过理论推导得到了空气弹簧刚度—充放气时间、高度—充放气时间和高度—刚度的关系曲线,然后根据曲线分别拟合出空气弹簧刚度—充放气时间、高度—充放气时间、空气悬架高度—刚度的关系函数。然后进行了高度位置切换+定载工况的整车充放气实验。本文中ECAS的充放气结果表现为高度位置与减振器阻尼的不同匹配,充放气过程为Fuzzy—PID控制系统的工作提供了依据。4.根据得到的空气弹簧高度、刚度与充放气时间的三者关系函数、空气弹簧刚度与最佳匹配可调阻尼减振器阻尼系数的关系,设计了基于Fuzzy-PID控制的电子控制空气悬架的控制系统,并进行了控制器的1/4台架实验和整车实验,取得了较好的控制效果:施加了Fuzzy—PID控制的空气悬架的性能指标—座椅处垂直方向振动加速度值得到了明显降低。