论文部分内容阅读
金属离子(如铜、锌离子)和生物分子(如RNA、DNA)在各种生物过程中发挥着重要的作用。近年来,高灵敏检测金属离子以及在疾病中具有指示性的生物分子微RNA(miRNA)引起了研究领域的浓厚兴趣。然而,金属离子浓度过低或过高都会对生物系统产生不利影响。因此,迫切需要开发高灵敏度和选择性的方法来检测人体内的和日常饮食中的金属离子。组织或体液中与疾病相关的生物标志物通常在疾病的早期阶段表达水平比较低,难以用常规分析方法检测。因此,新型超灵敏检测策略和生物分析技术的发展备受关注。本论文主要介绍了几种用于高效检测金属离子和miRNA的方法。主要内容如下:1.本论文提出了一种锌离子的荧光测定法。该方法依赖于(a)使用等温循环来放大荧光信号,和(b)使用磁性分离磁珠(MBs)以完全除去未反应的DNA检测探针降低背景干扰。首先将生物素和荧光基团标记的底物链(Zn-Sub)作为检测探针组装在MBs上。接着,将Zn(Ⅱ)-特异性DNAzyme(Zn-Enz)链与Zn-Sub链杂交。在Zn(Ⅱ)存在下,Zn-Sub链被剪切,这导致释放出较短的DNA片段(含有荧光标记)和Zn-Enz链的离解。离解的Zn-Enz链随后与剩余的Zn-Sub链杂交并以同样的方式剪切。从而实现靶循环扩增机制和累积信号放大过程。由此在Zn(Ⅱ)存在的情况下获得强烈放大的信号。未经剪切的Zn-Sub链可随MBs从溶液中磁性分离出来。该方法在信噪比为3时具有低至33 fM的检测限和在100fM至11 nM Zn(Ⅱ)浓度范围的线性响应。将其应用于加标自来水和海水样品中Zn(Ⅱ)的测定,所测定结果与ICP-MS分析得到的结果进行了比较。该方法还用于测定母乳粉和母乳中Zn(Ⅱ)的含量。2.本论文基于Cu(Ⅱ)特异性DNA酶(DNAzyme)和Ni/Fe水滑石(LDH)/G-四链体类过氧化物酶开发了灵敏的铜离子(Cu(Ⅱ))传感器。简而言之,在Cu(Ⅱ)存在时,短的富含鸟嘌呤(G)的片段标记的底物(Cu-Sub)链与Cu(Ⅱ)特异性DNAzyme(Cu-Enz)链杂交并被剪切,导致富含G的DNA片段的释放。同时,Cu-Enz链被解离并参与下一个杂交-剪切循环。累积的富含G的DNA片段进一步折叠成四链体结构。然后,使用链霉亲和素包被的磁珠方便地分离出所有未反应的Cu-Sub链、被剪切后的Cu-Sub链和Cu-Enz链。最后,将Ni-Fe-LDH纳米片与G-四链体(G-quadruplex,不含氯化血红素)结合用于催化比色反应,首次表现出增强的类过氧化物酶活性。这种新的Cu(Ⅱ)检测方法的检测限为0.29 pM,线性范围为1 pM至10μM(r2>0.997)。所建立的基于双酶的传感器被应用于测定血清样品中的Cu(Ⅱ),并获得与电感耦合等离子体质谱法(ICP-MS)的相近的结果。由此,Ni/Fe-LDH/G-quadruplex被证明是一种可用于分析应用的新型高效DNAzyme。3.本论文开发出了pH依赖性选择性离子交换与苯胺的催化聚合相结合的方法,用于铜(Cu2+)和铁离子(Fe3+)的灵敏检测。镍离子(Ni2+)螯合的乙二胺四乙酸(EDTA)通过共沉淀反应插入水滑石中。随后将插层后的水滑石产物用作吸附剂,用于富集pH 6.5条件下的Cu2+和pH 4.5条件下的Fe3+。由于Cu2+和Fe3+均与EDTA具有更强的络合物形成常数,因此Cu2+和Fe3+选择性地将Ni2+置换出来。所得的含有Cu2+/Fe3+的吸附剂被分离并用于催化苯胺聚合反应,因为吸附剂可以在不同的pH值下有效地释放Cu2+/Fe3+,并且具有高的聚合反应催化能力。由于在不同pH值下产生的聚苯胺具有不同颜色,故可利用比色信号区分Cu2+和Fe3+。经优化萃取温度、萃取时间、催化时间和pH值后,该方法对Cu2+的检测限为0.1 nM(6.4 ng/L),Fe3+的检测限为1 nM(56 ng/L);宽线性范围(分别为0.0005-2.5μM和0.005-5μM)且线性(r2值分别为0.9904和0.9965)良好。优化后的方法适用于河水样本中Cu2+和Fe3+的灵敏分析检测。以Cu2+/Fe3+为例,该工作为方便有效地检测水样中的金属离子提供了一种新型有趣方法。4.本论文设计了一种高灵敏检测microRNA(miRNA)let-7a的三重放大分析法。该方法依赖于与靶miRNA相关的杂交链式扩增反应(HCR)引发的磁性DNA/Fe3O4纳米片网状结构的形成。DNA/Fe3O4网状结构中的Fe3O4纳米片具有参与比色反应的类过氧化物酶催化活性,从而产生用于定量let-7a的高灵敏信号。在最佳条件下,该测定在信噪比为3时获得了13 aM的检测限,并且在0.05fM和12 nM之间获得了线性校准曲线。该三重放大方法成功运用于血清样品中let-7a的定量。该方法基于HCR、网状结构和催化反应的三重扩增策略,被证明是一种新型、快速、有效的miRNA分析方法。