论文部分内容阅读
随着船舶制造、海洋工程、重型机械等行业产品大型化及重型化,中厚板对接焊的应用越来越普遍,其打底焊接效率对整个生产制造周期起着至关重要作用。对于中厚板打底焊接,单面焊双面成形是一种高效焊接工艺,该工艺可省去中厚板传统焊接时翻转、清根或施加背面强制成形等辅助工序,具有改善焊工劳动条件,提高制造效率等优点。当前实际应用的单面焊双面成形工艺多是通过单电弧摆动焊接实现,其焊缝质量不稳定,焊缝成形可靠性差,焊接速度较慢,制造效率受到很大限制。本研究将脉冲MAG电弧与直流TIG电弧并列,利用两电弧间电磁场耦合效应形成MAG-TIG双电弧热源,显著提高了中厚板打底焊接背面熔透及其成形控制能力。本文主要研究内容及结论如下:(1)MAG-TIG双电弧热源可在焊接线能量较低的(为单MAG电弧焊接的89%)条件下实现根部熔合良好,背面熔透均匀、连续、稳定,余高尺寸适中的单面焊背面自由成形打底焊缝。中厚板打底焊接接头的各项力学性能良好,其拉伸试样的断裂发生在远离焊接接头及其热影响区的母材(Q235-B)上,试样断后伸长率为21.8%,抗拉强度为463 MPa。焊接接头硬度分布呈平缓过渡状态,未出现硬度过高区域。同时打底焊接接头具有良好的抗弯曲性能和冲击韧性。在本试验条件下,对于厚度为24 mm的钢板,焊接热输入为798 J/mm时,其单道熔敷填充金属高度达7.0 mm。因此,MAG-TIG双电弧热源中厚板打底单面焊双面成形工艺省去了传统制造中的翻转、清根或背面施加强制成形措施等辅助工序,可显著提高中厚板打底焊接接头质量稳定性及生产制造效率。(2)MAG-TIG双电弧焊接时,由于后端TIG电弧的并列加入,合理利用两电弧间电磁场耦合效应,形成了前端MAG电弧偏移振动及后端TIG电弧目前后振动的双电弧振动形态,提高了 MAG电弧等离子体放电稳定性。同时通过分析MAG电弧与TIG电弧间电磁场耦合效应,即计算不同MAG焊接电流、TIG焊接电流、MAG电弧电压及电弧间距条件下双电弧焊接时前端MAG电弧的偏移振动幅度。结合对应参数条件下MAG-TIG双电弧等离子体放电形态及其稳定性,确定在本试验条件下MAG-TIG双电弧热源稳定参数范围为MAG焊接电流270-330 A,TIG焊接电流50-150 A,电弧间距20-25 mm,MAG 电弧电压 30.0-31.6 V。(3)MAG-TIG双电弧打底焊接时通过调节熔池前端偏移程度来实现中厚板打底单面焊双面成形焊缝背面成形尺寸的精确控制。由于TIG电弧对前端MAG电弧的电磁排斥效应,使得前端MAG电弧在焊接熔池前端产生偏移振动,由此使得熔池前沿距焊丝轴线距离(等效为熔池前端偏移)增加。当使得双电弧焊接熔池前端偏移区域面积S1与前端MAG电弧加热圆形面积S的比例k值为24.2%-33.4%时,打底焊缝背面成形的余高尺寸在2.0±0.5 m范围内。在热源能量密度状态不变条件下,打底焊接单面焊双面成形焊缝背面余高尺寸与熔池前端偏移程度呈正比关系。即当熔池前端偏移比率k值较小(k<24.2%)时,打底焊缝成形背面余高偏小(<1.5 mm);当熔池前端偏移比率k值较大(k>36.9%)时,打底焊缝成形背面余高偏大(>3.0 mm)。由此实现中厚板打底焊接单面焊双面成形焊缝背面尺寸调节。(4)MAG-TIG双电弧热源中厚板打底单面焊双面成形较单电弧焊接时液态熔池与背面成形更加稳定。其机制为:首先,由于两电弧间电磁场相互耦合效应,前端MAG电弧偏移振动,使得其部分电弧等离子热量直接加热熔池前方母材钝边处,熔池前端液态金属温度降低,表面张力升高,有利于熔池稳定。第二,后端TIG电弧再加热,改变了熔池温度分布状态,在电弧等离子体对液态金属剪切力和Marangoni对流效应共同作用下,使得前端液态金属向熔池后端流动,减少熔池前端液态金属重力作用。第三,前端MAG电弧偏移振动促进液态金属对流传热,使得熔池液态金属温度梯度减小,同时液态金属温度较低,其表面张力较大,有利于打底焊接单面焊双面成形熔池稳定与控制。