Helmholtz共振腔型声学超材料正向设计

来源 :山东理工大学 | 被引量 : 0次 | 上传用户:hulin510
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
声学超材料以其特有的弹性波带隙特性,对中低频噪声具有良好的控制效果,为汽车减振降噪提供了新的理论方法和途径。目前,各类声学超材料主要是通过逆向设计提出的,当声学超材料的结构尺寸和介质参数一旦确定,其带隙特性随即固定,难以实现对弹性波的精确控制。本文以亥姆霍兹共振腔(Helmholtz resonator,简称HR)型声学超材料为研究对象进行分析,提出了一种适用于HR型声学超材料的正向设计方法。本文主要研究工作包括以下几部分:首先,介绍了HR与声学超材料研究的相关理论基础,包括HR共振理论、晶格理论、Bloch定理和能带理论等,为之后对声学超材料的研究奠定了理论基础。其次,利用多物理场仿真软件COMSOL计算了一维与二维HR型声学超材料结构的声学特性,讨论了关键几何参数改变对超材料结构声学性能的影响,结合声学超材料内部声压云图探究了超材料局域共振带隙的产生机理。对声学超材料的点缺陷态与线缺陷态进行了研究,分析了不同缺陷态在超材料中的作用。再次,依据HR型声学超材料局域共振带隙产生机理,确定使用HR共振频率计算公式对带隙起始频率进行计算,讨论了公式适用的HR尺寸范围,推导了用于带隙截止频率的计算公式。根据带隙起始与截止频率计算公式建立了用于HR型声学超材料正向设计的数学模型,设计了一种HR型声学超材料正向设计方法,并通过MATLAB GUI开发了正向设计的可视化界面。最后,通过3D打印机打印了二维HR型声学超材料板件,搭建实验平台测试了样件的吸声系数和吸声量,并将实验测试结果与仿真结果进行对照;设计并制备了一种可替换短管尺寸的HR型声学超材料周期板件,对不同短管尺寸超材料板件的吸声性能进行了测试。本文对HR型声学超材料的声学特性能进行了研究,提出了一种正向设计方法,为声学超材料的结构设计和工程应用提供了新的思路,使声学超材料在汽车中低频降噪方面的应用更加简单高效。
其他文献
作为电力运输中的主要设备,交联聚乙烯电缆(Cross Linked Polyethylene,XLPE)的绝缘性能决定了电力系统的安全性与可靠性,其绝缘性能的下降会直接威胁到整个系统的稳定。传统的电缆故障监测多为离线监测,无法对其绝缘状况进行实时评估,及时发现潜在的绝缘故障。因此,对运行中的电缆进行局部放电在线监测和识别,及时发现绝缘隐患,对保证电力系统的稳定运行具有重大意义。本文基于对几种常用在
固体氧化物燃料电池(SOFCs)因具有环保、高效等优点而备受关注。中低温化是其主要发展趋势。但是,随着工作温度的降低,阴极的极化阻抗急剧增大,导致电池性能下降。钙钛矿型无钴氧化物BiFeO3(BFO)具有热稳定性高、化学稳定性高、热膨胀系数低、无毒等优点,因而被视为中低温SOFCs阴极的重要候选材料。但其性能低于钴基阴极材料。本论文拟通过纳米纤维形貌构筑、元素掺杂、表面改性等方法,提高BFO阴极的
钛合金因其较高的比强度、低密度、优良的耐高温和耐腐蚀等性能,在航空航天、生物医疗、石油化工等领域具有重要的应用前景。然而,由于钛合金较低的弹性模量和导热系数以及高温下化学活性高等特点,使得常规微细铣削钛合金时加工效率低、刀具磨损严重和加工表面质量差等问题难以根本解决。针对这一问题,本文从降低待铣削材料强度出发,提出通过等离子体电解氧化技术,在Ti6Al4V合金表面原位生长低强度的疏松结构膜层这一构
当今时代,能源和环境问题日益严峻,我们希望通过开发新型的催化剂,降低大气中CO2的含量,并转化为CO,H2等燃料,为解决能源短缺和温室效应贡献力量。三嗪基有机骨架聚合物材料是以三甲基均三嗪为原料经过一系列有机合成反应合成的多孔聚合材料。它兼有无机材料刚性和有机材料柔性的特征,在各个领域都有十分重要的贡献,特别是在气体存储、光电材料和催化方面有重要意义。本文以三甲基均三嗪为基础,合成了两种新型的有机
汽车行业的蓬勃发展进一步的推动了消费者对车辆性能的要求,进而对轮胎的安全性能、舒适性能以及操稳性能有了更高的要求。充气轮胎在行驶过程中要定期进行检查、维护,以防在行驶时发生爆胎、漏气等安全问题,但由于无法彻底解决爆胎问题,致使轮胎的安全性能得不到有效的改善。针对上述轮胎安全问题,本文围绕非充气轮胎结构设计、基本力学特性分析、疲劳性能分析及寿命预测等方面开展研究工作,主要研究内容如下:第一,基于BE
线控主动转向系统是一种新型的转向系统。传统转向系统使用机械结构连接方向盘和转向机构,在线控转向系统中机械结构被电控系统替代,所以线控转向系统可以自由设计不同的角位移传递特性和力矩传递特性,对日后研究车辆稳定性、车辆操纵性以及主动安全性具有重要影响。本文主要对线控主动转向系统变传动比的设计方法和控制策略的稳定性展开深入研究。本文结合校企合作项目“汽车线控转向系统的开发”进行研究,主要研究内容和研究成
随着纯电动汽车产业的飞速发展,具有高效节能特性的多级纯电动汽车动力传动系统引起了广大学者的关注,本文以课题组自主研发设计的两挡直驱式AMT(Direct-Driving Automated Mechanical Transmission)为研究对象,对搭载DAMT的纯电动汽车换挡规律和换挡过程控制策略进行了研究,为了进一步缩短DAMT的换挡时间,提出了一种电机-同步器联合同步的换挡过程控制策略,综
三维模型自动化重建是数字摄影测量与三维激光扫描领域的重要研究方向。光学影像的三维重建技术已经非常成熟,但仍然有其局限性,其重建几何精度低于三维激光扫描仪获取的三维点云精度,研究光学影像和三维激光点云融合具有重要意义。要实现这两种不同源数据的融合,关键在于将光学影像和三维激光点云统一到同一坐标系,即配准。光学影像和三维激光点云粗配准主要通过特征的提取和匹配来实现,然而手动提取控制点费时费力,尤其对于
能源是人类生存和发展的重要物质基础,也是制约经济和社会发展的重要因素。节能减排已成当下各国绿色可持续发展的最佳选择,在我国各行业能耗中,工业能耗位居榜首,其中半数以上转化为不同载体、不同温度的工业余热,若将这部分余热加以有效利用,提高工业经济效益。本文为研究换热器内颗粒流动特性,建立多区域型换热器,利用离散元法建立换热器数值计算模型,并通过实验对比证明其准确性。对多区域型换热器内颗粒流动过程,通过
生物油蒸汽重整制氢技术被公认为是实现生物质大规模制取H2的最有应用前景的技术之一,开发利用潜力较高。基于国内外研究学者在生物油蒸汽重整技术理论基础研究和技术开发等方面已有的进展和问题,本文以Ni基纳米微粒催化剂为研究对象,对生物油衍生物乙酸蒸汽重整过程中H2、CO、CO2、CH4等气体的释放行为进行了深入探究,详细分析了催化剂的化学组成(Ni、ZnO、Ce O2)和结构与其反应活性和抗积碳性能之间