GeSi基板的制备及其形貌和结构特性研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:codeandme
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,在硅基光电集成领域,一个重要的研究方向是,以Si材料为基础,将以Ⅲ-Ⅴ族化合物为代表的光电子器件集成在一片Si衬底上,从而兼具Ⅲ-Ⅴ族器件优良的光电性能,以及成熟Si工艺的成本优势。而GeSi合金基板适合用于Si基衬底和Ga As基光电器件之间的缓冲层,传统的制备GeSi基板的方法是:先在硅上外延生长组分渐变的GeSi缓冲层,再外延生长GeSi基板,然而该方法成本较高,而且对于高Ge组分的GeSi基板来说,所需缓冲层厚度较大,不利于后续的器件集成,故需要寻找新的制备方法。针对该问题,本论文提出了一种全新的方法:使用电化学腐蚀法,在Si衬底表面制备一定厚度的多孔硅层,该多孔硅层具有纳米级的海绵状结构;之后使用气态源分子束外延方法,在海绵状多孔硅层内部的纳米级孔洞中填充Ge,通过Ge原子和多孔硅结构中的Si原子在沉积过程中高温条件下的互扩散,从而使多孔硅层形成GeSi基板。相比于传统方法,该法无需制备组分渐变的GeSi缓冲层,因而厚度较小,成本较低,并且根据电化学腐蚀条件以及Ge的沉积条件可调节Ge组分。本论文根据该方法,制备出具有高Ge组分的GeSi基板,并对其进行了全面而深入的测试及分析,本论文的工作内容主要分为以下几个方面:(1)自主设计并搭建了一套完整的电化学腐蚀系统,并在该系统上使用电化学腐蚀法,以体积比为1:1的HF/C2H5OH混合溶液作为腐蚀液,以5m A/cm2的电流密度对单晶硅衬底腐蚀20min,成功制备出具有纳米级孔洞结构的海绵状多孔硅材料。使用SEM对多孔硅样品的形貌进行表征,结果表明,多孔硅层的厚度均匀,约为2um。使用TEM对多孔硅纳米级孔隙的形貌进行深入观测,结果表明,孔隙的平均直径约为10nm左右。(2)使用实验室自行改装的气态源分子束外延系统,在多孔硅衬底上,以500℃的温度沉积Ge,成功制备出GeSi基板材料。对样品进行SEM/EDS测试,结果表明,Ge均匀填入多孔硅的纳米级孔隙。(3)对样品进行PL测试,结果表明,相比于多孔硅材料,GeSi基板样品的PL光谱出现明显的荧光淬灭现象,表明多孔硅的纳米级孔隙几乎被Ge填满。(4)使用拉曼光谱对GeSi基板样品进行测试并分析,Si-Ge峰的出现表明,在高温沉积过程中,Ge原子和Si原子实现互溶并形成GeSi合金,表明成功制备出GeSi基板材料。其表层Ge组分约为78%,具有0.5%的张应变。使用HRXRD对GeSi基板的组分进行深入分析,结果表明,GeSi层整体的Ge组分约为70%,成功制备出具有高Ge组分的GeSi合金基板材料。
其他文献
哈特利-福克方法和密度泛函理论是量子化学和凝聚态物理中最为常用的两种计算方法。因为它们都是从量子力学的基本理论出发,并且方法中很少使用经验参数,所以也被称为第一性原理计算方法。第一性原理计算方法可以帮助我们从微观层面定量计算材料的各种物理性质,这种方式极大地加速了我们对奇异材料物理性质的探索。近些年来拓扑绝缘体和外尔半金属方法的研究进展,很大程度上依赖于第一性原理计算与实验的结合。密度泛函理论是我
光与物质的相互作用不仅是很多物理现象的核心,其在现代科学技术中也起着至关重要的作用,这其中包括但不限于现代光谱学、激光、X射线源、发光二极管、光电二极管、太阳能电池、量子信息处理。本论文主要基于二维层状材料体系,利用光学和电学表征手段,研究二维材料中光与物质相互作用带来的独特物理性质。具体研究内容如下:1.利用拉曼光谱研究石墨烯中的非绝热电声子耦合。利用“pick up”干法转移的方法制备了超薄六
作为凝聚态物理的一个重要分支,超导自1911年被发现以来,以其独特的物理性质和潜在的实用价值一直受到研究人员的广泛关注。从金属单质到合金到化合物,从常规超导到非常规超导,超导研究取得了一系列重大的研究成果,同时也面临着许多机遇和挑战。近年来,拓扑非平庸材料因其独特的电子结构和在量子计算领域良好的应用前景而成为材料科学及凝聚态物理领域的研究热点,它的体态具有非零的拓扑不变量,在体态和真空相连接的边界
自从凝聚态领域引入拓扑概念以来,物理学家们对新奇拓扑物态的探索和研究已经蓬勃发展了几十年,发现了拓扑绝缘体、拓扑半金属和拓扑超导体等具有非平庸能带结构的拓扑材料,不断深入和丰富着拓扑物态的理论研究和实验证明,使固体能带理论得到进一步发展。同时拓扑系统中蕴涵的量子自旋霍尔效应和马约拉纳零能模等奇异量子态具有巨大的潜在应用价值,能够推动未来科技革命的进步,这些诱人的前景促使人们在各种体系中持续探求拓扑
磁性纳米材料的磁动力学研究是磁学的一个重要方向。在基于磁矩翻转的自旋电子学器件中,磁弛豫过程决定了器件中磁矩翻转的快慢和临界驱动电流的大小。同时,自旋电子学的发展使得基于电子自旋的信息处理和存储器件成为可能,其中关键技术之一是自旋流的产生和探测。而这关键技术在材料学中涉及到自旋流和电荷流之间的相互转换。理解自旋流和电荷流之间的相互转换,对于探索基于纯自旋流的新型低功耗器件应用而言是至关重要的。本论
电荷与自旋掺杂的“捆绑”是传统稀磁半导体(Diluted Magnetic Semiconductor,DMS)的固有缺陷。为了克服这一难题,本论文研制了一系列电荷与自旋掺杂机制分离的新型稀磁半导体,并在这些材料中通过引入化学压力有效的增强了铁磁关联和居里温度;揭示了材料中铁磁关联范围与自旋浓度之间的关系;在自旋玻璃态中发现了-94%以上的巨大负磁阻等新奇物性。具体内容包括:一、稀磁半导体的物理压
由于电子间库仑相互作用的存在,关联材料含有十分丰富的多体物理效应和量子物态,如高温超导、莫特绝缘体、重费米子和非费米液体等,是凝聚态物理学重要的研究对象。此外,一些关联电子材料还表现出拓扑物态。多体效应和拓扑物态的结合演生出了一些有趣的量子材料体系,比如近藤拓扑绝缘体等。稀土基金属间化合物由于其4f电子与传导电子之间的杂化作用而表现出强关联效应,展现出上述诸多奇异物性,是一类传统的关联量子材料。以
近年来,随着信息技术的高速发展,提高信息传递速度和信息处理的效率变得尤为重要。新型信息器件逐渐成为了人们研究的热点,特别是具有非易失性、高读写速率、高存储密度、低能耗、价格低廉和低电压特点的通用型存储器。此外,人脑具有超高密度、低能耗、并行模式、抗干扰能力、自适应学习能力和高容错能力的优点,研究类人脑神经突触器件是提高计算效率的新途径。近期,随着基于磁电耦合效应的电耦器(第四种基本电路元器件)的构
在电子元件尺寸越发趋近其理论极限的今天,二维材料作为开发新一代电子学、光电子学、自旋电子学器件的重要载体,备受全世界研究者的关注。为了最大化二维材料的应用潜力,需要在二维体系中发掘出更多新的物性。而基于结构决定性质的原则,这就要求人们发现更多调控二维材料结构的手段。因此,如何在二维系统中构筑新的结构,就成为了一个值得研究的问题。本论文主要工作集中于对两种二维材料体系——石墨表面上的单层二硒化钒和P
元激发是凝聚态物理中十分重要的概念,不管是单粒子激发还是集体激发,都对材料的物理性质具有举足轻重的影响。近年来,凝聚态物理在材料的拓扑物性研究上获得了巨大的进步,以拓扑绝缘体和拓扑半金属为代表的拓扑材料不仅极大地开拓了人们对基础固体物理的认知,也带来了丰富的应用前景。对拓扑材料元激发的研究是理解拓扑物性的关键。本文聚焦于拓扑材料元激发的探索,以典型的节线半金属ZrSiS为例,一方面探索了其独特表面