垂直磁记录介质材料的制备及翻转模式研究

来源 :复旦大学 | 被引量 : 0次 | 上传用户:m3p0308
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着信息产业和互联网产业的高速发展,数据需求量越来越大。硬盘作为数据存储行业中最重要的部分已经不可替代,提高磁记录存储密度成为适应信息产业高速发展的途径之一。目前,商业化磁记录技术已经从水平磁记录顺利过渡到了垂直磁记录,存储密度超越了150 Gbit/in2,实验室范围内已经达到了614.4Gbit/in2。虽然离垂直磁记录的极限密度1-1.5 Tbit/in2已经近在咫尺,但记录密度的进一步提高仍然依赖于新的介质结构设计和新的记录技术的共同进步。制约垂直磁记录密度提高的主要因素是超顺磁效应,为了克服晶粒减小所带来的热扰动性的影响,需要寻找高磁晶各向异性的材料作为记录介质。寻找新的记录介质、改善已有记录介质的性能成为本文所研究的主要目的。  下面是本论文研究的主要内容:  1、高磁晶各向异性MnAl薄膜的研究:铁磁性τ-MnAl具有较高的磁晶各向异性常数(KU=1.7×107 erg/cm3),是理想的磁记录介质之一。本文研究主要是通过两个方面改善样品的磁性能。首先,利用制备楔形膜的方式来精确控制τ-MnAl产生的元素配比,并且通过观测其△M曲线研究MnAl颗粒间的相互作用方式和磁性翻转模式。其次,通过制备缓冲层引导后续薄膜生长,在得到较好τ-MnAl缓冲层的条件下,制备出了具有较好磁性能的τ-MnAl样品。  2、FePt基交换耦合结构和梯度型结构介质研究:虽然FePt具有很高磁晶各向异性,但其矫顽力较大,使记录信息很难写入。在保持热稳定性的条件下有效降低写入场是我们研究的主要目的。本文以L10-FePt为基础,通过溅射Fe和Co的方式来制备交换耦合结构和梯度型结构介质。结果证明两种材料均有效地降低了L10-FePt的矫顽力,并且显示较好的垂直特性。其次,讨论了硬磁软磁耦合翻转的两种理论模式,并且通过实验观测到了磁壁辅助磁化翻转模式,第一次从实验上得到了证实。
其他文献
随着全球变暖,大气污染问题日趋严重化以及常规能源供应耗尽,开发和利用可再生绿色能源已成为人类社会所面临的重大课题。今天,太阳能发电被广泛认为是一种可持续增长的、绿色可再生的能源技术,而太阳能电池已经渐渐应用于各种各样的领域,从消费电子、小尺度分布式系统到兆瓦规模的集中火力发电厂都能发现它的存在。目前,太阳能电池是以固态光伏电池为主导的。以后太阳能电池将会向低廉高效的方向发展,染料敏化太阳能电池(D
超短脉冲激光技术近些年的发展迅速,已在各方面得到了广泛的应用。人们利用超短脉冲激光作为光源,开发了时间分辨光谱技术和泵浦探测技术,包括时间分辨拉曼光谱技术、差异吸收光谱技术等。通常,产生超短脉冲的方式有高次谐波方法、受激拉曼法和频谱合成法。通过相位相互锁定频率为2f、3f的激光器,通过倍频和差频等非线性过程,在非线性晶体中产生f~6f的相位相关频率成分,进而进行频谱的合成,从而产生亚飞秒脉冲的方案
有机电致发光器件(Organic Light-Emitting Device, OLED)具有主动发光、能耗低、发光谱带宽、品种多样、制造成本低廉、轻薄、无角度依赖性等一系列优点。OLED的电致发光过
正交频分多址技术(OFDMA)又称MU-OFDM(Multi-User OFDM),多用户正交频分复用技术是基于OFDM技术的一种新的多址方式,其具有频谱利用率高、能有效对抗多径衰落等优点。OFDMA技术
信使RNA的选择性剪接是真核生物有别于原核生物的基本特征之一。选择性剪接使单个基因产生多种转录物,是多细胞高等真核生物蛋白质多样性和功能复杂性的主要机制。mRNA前体的
钙钛矿结构锰氧化物具有丰富的磁电性质,包括铁磁性、铁电性、庞磁电阻、磁热效应等,这些性质使得该种材料在工业应用上具有很高的潜在价值,并且成为当今凝聚态物理学家研究