论文部分内容阅读
本研究中,以低浓度硫化氢气体为研究对象,在充分分析研究了以往的各种治理方法以及前期子课题的研究成果后,采用了一条以铁基离子作为主催化剂的较为简明的催化氧化净化路线,简化工艺的同时兼顾了硫磺回收。实验研究中,主要针对H2S浓度在200~1500ppm之间,氧含量在0.5~21%的尾气进行了大量的动力学实验分析:随着原料气进气中H2S浓度的提高,吸收过程的传质动力增强,在其他操作条件不变的情况下,吸收速率随之增大,实验数据对H2S回归得吸收反应速率方程为:NH2S=-1.49566+0.009284PH2S,r=0.999043,r2=0.998087,因此可认为对H2S是一级反应;在不同的吸收温度下,其吸收速率随原料气中H2S浓度而变化的趋势基本一致,均随H2S浓度的增加而增大,吸收反应在60℃时可达到较理想的净化效果;无论原料气中H2S是高浓度还是低浓度,其吸收速率均随吸收液中Fe3+浓度的增加而增大,在原料气中H2S浓度较低的情况下,吸收速率受Fe3+浓度的影响更大。当Fe3+浓度的增加到0.05mol/L时,吸收速率曲线的增长趋势均趋于平缓。因此,认为在此浓度下就可以满足反应需要了;在Fe3+离子浓度相同的条件下,pH值对吸收速率的影响较小,尤其在Fe3+离子浓度为0.05 mol/L时,吸收速率就已基本达到最大值。相对而言,H2S含量低的气体比H2S含量高的气体易受pH影响,pH控制在7~10的范围内时,反应速率及效率均随pH值的增大而升高,但变化幅度不大,能保持较稳定的状态;综合考虑,pH保持在9左右是较为理想的;在不同的试验温度下,In[PH2S]-t呈现较好的线性关系,说明本实验中在20~80℃温度范围内,该反应对H2S为一级反应:吸收反应的表观活化能Ea为24.814kJ/mol:当原料气中的氧含量在0.5%~10%之间时,随着氧含量的增加,吸收速率增长的趋势并不明显;而从10%到21%之间,吸收速率的增长幅度较为显著;在最佳操作条件下,用Fe3+作催化氧化剂,同时加入稳定剂,当尾气中氧含量仅为0.5%时,其净化效率可长时间维持在95%以上,且吸收液的硫容量大于4gH2S/L吸收液;当吸收液硫容量达到饱和,可通入空气进行再生,同时可回收硫磺。 因此,本课题研究的液相催化氧化法对低浓度硫化氢尾气的治理及硫的回收利用具有重要的现实意义。