【摘 要】
:
纳米材料与块体材料相比,其光学、电学、磁学和力学性能等都可能发生变化,使得它在信息存储、生命科学、环境能源、航空航天、催化传感等许多重要领域有着广泛的应用前景。本
论文部分内容阅读
纳米材料与块体材料相比,其光学、电学、磁学和力学性能等都可能发生变化,使得它在信息存储、生命科学、环境能源、航空航天、催化传感等许多重要领域有着广泛的应用前景。本文采用均相沉淀法制备纳米Co3O4粉体材料,并利用多孔氧化铝膜板(AAO)以电化学沉积法制备Co3O4纳米线,研究它们的结构、组成和磁性能。 本论文主要由以下三部分组成: 1.详细研究了制备高度有序的多孔阳极氧化铝模板的工艺,并表征氧化铝模板纳米孔的形貌和结构。 2.采用均相沉淀法在硝酸钴和尿素溶液中制备纳米Co3O4粉体材料,研究Co3O4纳米粉体结构、形貌、粒径分布和磁性能。 3.硝酸钴溶液中,以电化学沉积方法,在AAO中成功地制备出Co3O4纳米线阵列,Co3O4纳米线阵列的形貌、结构、化学成分及磁性能用SEM、TEM、SAED、EDS和震动样品磁强计(VSM)进行表征。 结果表明:5K温度下,Co3O4具有单晶结构且Co3O4纳米阵列具有磁各向异性,其最易磁化方向是纳米阵列平行于外磁场方向。
其他文献
2,3-环氧丙基三甲基氯化铵壳聚糖(HTCC)作为优良的天然聚阳离子材料,具有良好的可生物降解、生物相容等性能,己被用于药物控释、靶向、智能给药等多种药物载体的研究。与引入脂
感光胶是丝网印刷行业中必不可少的原料之一,主要用在印刷前的网版制作过程,其感光性能的好坏、稳定性等直接影响丝网印刷的效果。感光剂作为感光胶中的核心部分,直接影响了
随着超大规模集成电路(ULSI)中器件集成度的逐步提高,半导体芯片内部金属连线间和层间的阻容耦合延迟及串扰越来越严重,从而导致信号传输速度下降和能耗加剧,成为制约半导体
睾丸酮丛毛单胞菌是以环境中的甾体激素作为其生存的唯一碳源和能源,并能够通过体内的一系列酶将甾体激素降解为水和二氧化碳,以此特性而成为研究热点。 短链脱氢酶(SDRs)是睾
功能配合物与材料和信息科学密切相关,是具有潜在应用价值的基础研究领域之一。设计和合成光电性质良好的配合物成为配位化学的一个热点。在前期的工作基础上,设计合成了一系
导电聚合物聚吡咯(PPy)以其易于合成,环境稳定性较好,电导率高,氧化还原性能优越,无毒无公害等特点已经逐渐发展成为了导电高分子领域的热门研究方向,这些优异的特性使得它在传感器,新能源电池,电磁屏蔽,金属防腐等领域都有着广泛的应用。近几年,多组分的聚吡咯复合材料层出不穷,可以通过多种功能材料的复合,实现多种材料与聚吡咯性能的互补与优化,更大程度地发挥聚吡咯作为导电高分子的优势。本论文主要在以下三个
搪瓷是一种典型的无机非金属材料,它是一种覆在基材表面的一层或多层玻璃质釉,在一定温度下烧制而成的基材与无机氧化物牢固结合的复合材料。搪瓷涂层是一种非晶态无机非金属
超级电容器,一种新型的能源存储-转换器件,因其功率密度高、充放电速率快和循环寿命长等特点,而被广泛研究。众所周知,超级电容器的性能由电极材料的本质决定,所以在过去十年内,具有良好电化学活性的电极材料的开发一直是该领域研究的重点。研究者们尝试通过不同的化学和/或物理方法控制电极材料的结构,从而提高其电化学性能。本文主要是通过二维高分子的自组装,制备结构可控的三维多孔复合材料,并研究其作为超级电容器电