论文部分内容阅读
能源互联网中存在大量分布式电源及储能设备,导致低压电力线通信(Power Line Communication,PLC)环境更加恶劣。因此,提高低压PLC网络性能具有重要的意义。目前,低压PLC多以对称信道为条件展开研究。事实上,低压PLC信道部分情况下是非对称的。针对这一实际情况,本文以PLC协议栈的数据链路层和网络层为研究对象,以提高网络性能为目的,在非对称信道环境下分别从低压PLC组网快速性、网络健壮性、网络单播及组播路由通信性能和网络整体饱和通信性能等方面展开研究工作:针对现阶段组网方法在非对称信道环境下对拓扑的动态变化反应相对滞后导致组网时间较长的问题,提出基于CSMA/CA+TDMA混合协议的低压PLC组网方法。通过与未知环境不断交互试错,关联注册节点信息,经周期性学习训练,优化以网关为根的最矮簇树,实现快速组网;在节点间距离较远或信道环境较为恶劣的条件下,探讨基于CSMA/CA+TDMA混合协议的多网络快速融合方法。该方法能智能识别区域内存在多个网络,自主选取媒体访问控制(Media Access Control,MAC)地址最小的网络为多网融合方向,解散MAC地址较大的网络,解决多网络不确定性融合问题。网络解散后节点经试错学习可实现注册入网,保证组网完整性与快速性。仿真验证所述方法的有效性与泛化能力。针对组网完成后节点的投入与切出导致对网络健壮性产生不良影响的问题,提出基于小世界模型的低压PLC网络维护与自愈方法。以带宽为约束,以环境自适应为学习目标,运用网络维护方法,动态感知网络状态信息,不断学习异动事件的发生规律。当故障发生时,自适应选择恢复路径,确保数据的实时传输,实现网络自愈。子节点运用小世界思想,智能选取网络连接度较高的代理,提高网络健壮性。在保障网络健壮性条件下,针对遗传算法在服务质量(Quality of Service,Qo S)参数约束下局部搜索能力差、难以得到按需路由最优解的问题,在非对称信道环境下提出基于改进遗传蚁群算法的路由方法。源节点和目的节点不参与交叉、变异操作,有效避免无效染色体的生成。采用最佳保留机制找到较优解,将较优解转换成蚁群算法的初始信息素,找到路由的全局最优解。节点采用改进算法可实现单播及组播通信。仿真验证改进算法相比原始算法的有效性。针对信道非对称性及噪声干扰严重影响网络整体饱和带宽利用率、接入时延等问题,提出一种适用于低压PLC节点规模受限的改进型自适应p-坚持CSMA博弈优化方法。节点采用隐马尔可夫模型对当前信道竞争的博弈节点进行动态估计;根据博弈结果自适应调整收发端的纳什均衡,控制节点发送数据包行为,降低数据包冲突概率,保证信道处于最佳传输状态,获取网络整体最佳饱和性能。