论文部分内容阅读
本论文以高聚物共混体系界面上的扩散现象为理论基础,采用一种新颖、简单、经济、环保的复合膜层压剥离的方法来实现超疏水表面的大面积制备。实验采用工业常用原料聚乙烯与聚丙烯为制备材料,通过层压法将聚合物薄膜复合,冷却后剥离发现剥离表面有微纳米级的层级结构,赋予表面优良的超疏水性质。文章研究了加工原料的支化结构,组分比,加工条件,剥离条件等方与剥离表面微观结构的相互影响关系,并对表面的微观结构和润湿情况进行性能表征。实验结果发现与其他种类聚乙烯相比, HDPE与PP层压剥离后表面剥离纤维密度最大,CA角可达157°,为同种加工条件下几种聚乙烯材料中超疏水性能最好的材料。加工条件会通过影响界面扩散影响最终的剥离表面的微观结构,实验首先对mLLDPE与PP进行层压剥离,考察加工工艺对超疏水性能的影响。结果发现当层压温度达到180℃,层压时间为30s时,常温冷却剥离后,剥离表面的微观层级结构赋予mLLDPE表面最优的超疏水性能,表观接触角可高达160°。之后又对HDPE/PP进行剥离工艺的考察,发现淬火的冷却方式和80℃剥离温度时,HDPE表面剥离纤维密度最大,接触角为167°。另外,我们对实验制备的超疏水表面进行性能优化改善其表面耐磨性及超疏油的性质。实验分别采用超高分子量聚乙烯(UHMWPE)和二氧化硅(Si02)进行共混改性来增加剥离表面的层级结构,以一种“保护性”微球及增加表面层级结构的方法来改善表面的耐磨性。实验证明,超高分子量聚乙烯的加入量达40%时表面耐磨性最优,静摩擦后接触角变化率最小,而Si02的加入虽然增加了表面微观结构的层级性,但经摩擦后,接触角迅速下降,耐磨性并没有太大改善。对超疏油表面的改性主要是在剥离表面进行氟硅烷的沉积,在控制表面粗糙度的基础上降低剥离表面的表面能,并通过改变氟硅烷沉积时间和沉积浓度发现适量的浓度和时间可有效的达到表面双超疏的目的。