论文部分内容阅读
在新型功能高分子材料领域中,聚苯胺(PANI)因为合成工艺简单,环境稳定性强、掺杂导电率高、优异的电化学可逆性等特性而受到广泛关注,同时因其独特的掺杂-脱掺杂过程,赝电容储能特性良好,在电极材料等领域极具应用价值。在多孔材料领域中,反蛋白石(Inverse opal)结构材料具有缝隙率高、高比表面积、孔径大小集中及结构三维长程有序等特性,其在膜材料、光子晶体、新型催化剂、吸附材料及电极材料等领域已经展示出十分广阔的应用前景,也越来越多的研究者们开始注重如何制备出兼具导电高分子和纳米材料的微观三维有序结构聚苯胺及复合材料。本论文围绕制备具有特殊结构的导电聚合物及其复合材料来展开,以Si O2微球和Si O2微球模板为基础,采用溶液法制备了核壳结构Si O2-PANI、蛋白石结构Si O2-PANI及其去球后的多孔PANI和反蛋白石结构PANI,对所得产品进行了结构的分析和性能研究。主要研究内容及结果如下:①研究采用经过改进的St?ber法成功地制备出尺寸均一、单分散性好的Si O2微球,探索了制备360nm Si O2微球的工艺条件,对微球进行改性及后续模板的组装得到蛋白石模板。基于二氧化硅微球和Si O2微球模板,本文分别采用溶液法制备核壳(core-shell)结构Si O2-PANI和蛋白石(opal)结构Si O2-PANI的复合材料,对制备条件进行了探讨,并对复合材料进行了HF酸去球处理,得到多孔结构聚苯胺(porous PANI和反蛋白石结构聚苯胺(inverse opal PANI,IO-PANI),采用红外光谱(FT-IR)、X-射线衍射(XRD)、四探针电导率仪、扫描电镜(SEM)、透射电镜(TEM)、CV曲线和充放电等测试方法对Si O2-PANI(core-shell)、Si O2-PANI(opal)及其去球后的porous PANI和IO-PANI进行了结构、形貌以及电化学性能的表征。②研究发现采用离心沉积组装模板效果最好,实验均在1 mol L-1 HCl,摩尔比nAPS:nAn=1:1条件下进行,对于核壳结构Si O2-PANI随着mPANI:mSi O2的增大,核壳结构Si O2-PANI电导率从1.7S cm-1逐步增大11.3S cm-1,除去Si O2微球后发现porous PANI电导率变化并不是很明显;对于蛋白石结构的PANI/Si O2复合材料,在苯胺浓度为0.4mol/L时,蛋白石结构的PANI/Si O2到达最高27.4 S cm-1,除去Si O2微球以后导电率大幅度下降。可以得到初步结论,聚苯胺微观结构的有序性直接影响着材料的导电性能,去除Si O2微球后无序的的孔结构以及结构的塌陷都会降低材料整体的导电性。③在聚苯胺电化学测试中同一扫描速率下Si O2/PANI(opal)和IO-PANI材料展现出更为优异的电化学活性和更大的电容性能;从0.2 A g-1到5 A g-1,相比于核壳Si O2-PANI(core-shell)、Si O2-PANI(opal)、porous PANI及PANI等复合材料,IO-PANI比电容达到375F g-1(0.2A g-1)远远超过其他材料,且在增大到5 A g-1过程中,IO-PANI和Si O2/PANI(opal)的比电容相比于其他材料具有更高的保留率。