基于随机采样预处理的多维背包问题求解方法研究

来源 :东北师范大学 | 被引量 : 0次 | 上传用户:qx552801
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究内容是多维背包问题,多维背包问题的目标是在满足所有维度下的限制条件找出被选择的物品总价值最大的组合,它是NP难的组合优化问题,在计算上具有挑战性并且在生活中应用广泛,多维背包问题广泛存在于货物装载、削减库存、项目选择、资金预算、解决处理器和数据库在分布式计算机系统上的分配问题等方面。因此,求解多维背包问题具有重要的理论指导意义和实际应用价值。本文提出随机采样预处理的方法来求解多维背包问题,对目前求解多维背包问题最好的量子粒子群优化算法进行改进,通过随机采样预处理估计多维背包问题中每件物品是否该放入背包,通过随机采样得到的扰动因子将在物品排序过程和解更新过程进行扰动,物品排序策略和解更新策略采用随机采样预处理方法的扰动因子是不同的,在这两个部分中对随机采样预处理的扰动因子分别进行研究。第一部分是对物品排序过程进行扰动,在物品排序处理中不再选择流行的物品排序方法,而是选择通过随机采样预处理策略得到的信息对物品进行排序;第二部分是对量子粒子群更新过程进行扰动,量子粒子群更新过程是通过随机采样预处理得到的算子与原先量子粒子群优化算法相结合,构成新的扰动因子,以此来对量子粒子群更新过程进行扰动。这两个部分的改进可提高量子粒子群优化算法对多维背包问题的求解性能。本文采用的实验数据集是OR-Library中多维背包问题的数据集,通过实验对本文提出的算法进行分析与量子粒子群优化算法进行比较,结果显示本文提出的方法在一定时间内比量子粒子群优化算法能更快地找到较好的解,这对于求解多维背包问题以及求解多维背包问题的实际应用问题具有重要意义。
其他文献
随着图像数量日益激增,让机器自动识别图像内容,并用符合人们阅读习惯的语句描述图像内容的图像文本描述技术,成为目前人工智能领域一项重要的研究内容。图像文本描述技术的主要目标是让机器实现“看图说话”,“看图说话”同时也是幼儿教育的主要任务之一。通过图像文本描述技术,幼儿跟随机器一起进行“看图说话”,这将在一定程度上辅助引导幼儿理解图像内容,激发幼儿的学习兴趣。本文的研究目标是利用图像文本描述技术设计并
最小顶点覆盖问题(MVC)是组合优化领域的一类常见问题,在这类问题中,部分顶点覆盖问题(PVC)是其中一个热门研究方向。我们生活中很多问题都可以转化为PVC问题,比如监控设备安装问题、高校教师排课系统、网络优化问题、线路规划问题等。PVC问题属于NP难问题,也就是说随着数据规模的增大,问题的求解时间往往呈指数级增长,这种情况下要求出问题的精确解所需要的时间开销是难以忍受的,因此近似算法成为解决PV
翻译后修饰(PTM)是指在蛋白质生物合成后对蛋白质进行共价修饰,通常是酶修饰。蛋白质翻译后修饰在蛋白质的加工、成熟以及改变蛋白质的物理和化学性质中起着非常重要的作用。蛋白质亚硝基化是一种重要的、可逆的蛋白质翻译后修饰,涉及一系列生物过程。此外,越来越多的人类疾病被发现与亚硝基化异常密切相关。因此,识别和理解亚硝基化对于细胞生物学的研究、疾病治疗十分重要。亚硝基化位点的准确预测不仅有助于揭示亚硝基化
随着在线医疗服务平台的发展,积累了大量的电子健康记录,使得患者可以从丰富的医疗信息资源中获得更好的医疗服务。然而,患者很难从复杂的信息资源中找到最适合医治自己疾病的医生。这些医疗数据中存在许多无法察觉但是又十分重要的联系,所以发现数据中内部关联对于疾病预测及医生推荐问题具有一定的研究价值。有效分析和挖掘电子健康记录对患者及时、准确获得治疗也具有重要意义。传统的医疗诊断方式往往凭借医生的专业知识和实
学位
蛋白质结构预测的研究对了解蛋白质功能、促进蛋白质工程以及药物的研发具有重要意义。而跨膜蛋白则是蛋白质中结构比较特殊的一类蛋白,其通过特殊的跨膜结构穿透磷脂双分子层长期稳定地固定在生物膜上,是生物膜功能的主要承担者。因此,跨膜蛋白结构的研究具有非常重要的生物学和医学意义。根据跨膜区结构的不同,跨膜蛋白可以分为α螺旋和β桶状跨膜蛋白两大类。作为跨膜蛋白中重要一类的α螺旋跨膜蛋白,其结构的研究对于跨膜蛋
RNA与蛋白质的相互作用在许多重要的生物学过程中起着重要的作用。基于新一代测序技术的创新和发展过程,数以百计的RNA结合蛋白(RBP)及其相应的RNA被逐渐发现。通过对其生物学进程的总结和分析,使得在计算生物学方面,利用机器学习的方法对RNA-蛋白质相互作用进行大规模预测成为可能。到目前为止,在计算生物学领域的学者已经在此问题上探究和开发出了多种计算工具和方法,其中就包括深度学习模型,同时也利用基
在“互联网+”时代,随着信息量的不断扩增,人们的兴趣也变得多种多样,如何使人们在巨量的信息中快速准确地找到符合需求的信息就成为当下亟待解决的问题。推荐系统作为一种有效的信息过滤手段被广泛应用于工业界和学术界,因此对推荐系统的研究也成为最热门的课题。大多数推荐方法一般都采用深度学习与协同过滤相结合的方法,在一定程度上提高了推荐的性能,然而这些方法依然存在以下四个问题:(1)不能捕获用户动态变化的兴趣
光学字符识别(Optical Character Recognition,OCR)技术始于上个世纪六十年代中期。深度神经网络出现后,识别对象由印刷体字符发展为自然场景字符,目前基于深度学习的OCR已经成为机器视觉领域中的一个重要研究课题。随着中国制造2025的提出,推动我国的工业面向信息化发展,字符识别技术在工业环境中的应用受到了广泛关注。区别于高分辨率、高清晰度的文档字符图像,复杂的工业环境中字
物联网(Internet of things,IoT)的应用开发前景越发广阔,大量的智能环境可以连接到脑机接口(Brain Computer Interface,BCI)系统上。BCI系统是一种连接人类大脑与外部设备的实时通信系统,直接将大脑产生的信息转换成驱动外部设备的命令,取代人体或言语器官与外部世界进行通信。简而言之,BCI系统可以代替人体大脑周围神经和肌肉组织,实现人与外界环境的沟通。BC