论文部分内容阅读
工业窑炉是钢铁、有色金属、玻璃等行业不可或缺的热工设备,但是由于窑内各种气氛、炉渣的侵蚀,随着窑炉服役时间的延长,窑炉会出现不同程度的损坏,窑炉内衬的损坏会增加能耗,在修补时需要停窑停产,这就增加了生产周期,增加了生产难度,提高了生产成本。通常修补工业窑炉的方法有:抹补法、湿法喷补法、火焰法以及陶瓷焊补法。陶瓷焊补是新兴起来的一种热修工业窑炉的方法,陶瓷焊补法是利用氧气将焊补料喷出,到达高温待修补区域,焊补料中的可燃物与氧气发生剧烈反应,在修补处形成熔融体,起到修复破损的作用。与以往的传统修补工业窑炉的方法不同,陶瓷焊补避免了降温、升温过程中由温度的波动对炉体造成的破坏,能在短时间内回复生产,节省了成本。由于不同材质的材料在使用过程中的膨胀系数不一样,因此,为了保持与基体结合的稳定性,陶瓷焊补料的成分应与母材成分相同或相近。在焊补过程中,影响焊补效果的因素主要有氧气流量、焊补料配方等。氧气流量的大小不仅会影响焊补料的输送,还会影响燃烧效果。未经过预热的氧气容易降低反应面的燃烧温度进而影响焊补面燃烧的稳定性。目前,工业应用中尚且存在硅粉燃烧效率低,焊接体疏松且与母体结合不牢固,点火效率差等诸多问题。本文以硅粉、铝粉为燃烧剂,石英、刚玉为焊补骨料,利用小型焊补装置在实验室范围进行了陶瓷焊补实验,研究了添加不同燃烧剂、不同粒度的骨料对焊补过程的影响,不同类型焊补料的研究以及如何提高硅粉的燃烧效率,通过X射线衍射仪(XRD)、金相显微镜、红外测温仪、扫描电子显微镜(SEM)和比表面积测试仪对焊补体的微观形貌、成分、结构,焊补过程中的反应温度进行了分析.研究表明:(1)以硅粉、刚玉为主要原料,通过焊补料的配方优化,研制出了莫来石质高温陶瓷焊补料,通过X射线衍射分析,焊补体中出现莫来石的晶核。(2)当氧气流量0.4m3h-1、利用率为30%时,氧气对硅粉的助燃效果最佳,并且氧气对焊补料的携带输送能力也达到最佳;当焊补料中硅粉加入质量分数为25%时,焊补效果最佳,焊补面温度高达2637K;此外,不同粒度级配的焊补料要比单一粒度级配的焊补料更容易燃烧。(3)粒度越细、比表面积越大,硅粉的燃烧效率越高;以钾盐、铁盐、铵盐三种物质作为助燃剂研究助燃效果,相同的添加量的助燃剂中,三氧化二铁的助燃剂助燃效果最佳,硅粉的燃烧效率升高了30%。