论文部分内容阅读
石油中相对分子质量最大、结构最复杂、极性最强的组分沥青质极易缩合生焦。针对这一问题,课题组提出“沥青质液相氢化分解工艺”,可以实现沥青质高效转化,把富氢溶剂作为体系中氢自由基的主要来源。本课题主要针对环烷基原油沥青质的液相氢化分解反应规律进行研究。首先,从影响因素和实际考察两个方面对稳定性进行分析,确定液相氢化分解反应体系的可行性,并指导实际反应中工艺条件的选择以提高沥青质的转化率。选取5种不同基属的原油沥青质,4种不同类型的富氢溶剂,通过计算探究分散相(沥青质)和分散介质(可溶质)两相溶解度参数出现差异的因素,结果发现,沥青质发生相分离的主要原因是两相相溶性的降低,而影响相溶性出现差异是由多种因素共同决定的,包括:两相结构、性质的不同和工艺条件的改变。低H/C原子比、高芳碳率、高硫、氮含量的分散相沥青质的溶解度参数最高;高芳烃含量的分散介质溶解度参数相对较高,与沥青质的相溶性好,体系也最稳定;反应温度越高,压力越小,稳定性变差,增大反应压力可以减缓反应温度升高导致两相分离的速率。针对溶解度参数最高的委内瑞拉沥青质和与其相溶性较好的分散介质糠醛抽出油430~450℃馏分(FEO-5),通过计算确定体系中沥青质出现沉淀的温度-压力区间,结果表明,在考察范围内,反应温度350~480℃,反应压力5~35 MPa沥青质才会发生聚沉。分别采用S分离值法和Flory-Huggins热力学模型对液相氢化分解反应过程中胶体体系稳定性进行实际分析,结果发现,随着富氢溶剂FEO-5加入量的增加,体系逐渐趋于稳定,起沉点增加由0.08 g/g升至0.16 g/g,S值由13%降至7.5%,焦炭产率由3.27%降到1.33%,说明富氢溶剂的加入提高了胶体体系的稳定性,有利于沥青质的有效转化。其次,对委内瑞拉环烷基原油沥青质液相氢化分解的规律进行研究。根据前面溶解度参数的计算,选取与委内瑞拉原油沥青质相溶性较高的工业馏分油富氢溶剂FEO-5和催化裂化回炼油430~450℃馏分(HCO-5)并对这两种工业馏分油富氢溶剂进行筛选,然后考察工艺条件对产物分布的影响。结果表明,FEO-5是最适合沥青质轻质化的富氢溶剂;反应温度升高、反应时间增加促进沥青质的有效转化,但过高的温度、过长的时间会导致焦炭产率增加,沥青质有效转化率下降;反应氢压的增加有利于富氢溶剂为沥青质提供更多的活性氢,可以抑制富氢溶剂自身裂化,这也与前面考察反应压力对胶体体系稳定性影响的趋势相近;催化剂的加入可以降低焦炭产率,但随着其加入量的增多,沥青质转化率变化较小。综合考虑,最优的反应条件为390℃、5 h、反应氢压13 MPa、溶剂比5:1、催化剂加入量500μg/g,沥青质转化率达到74.6%,焦炭产率为4.61%。最后,对液相氢化分解反应体系中活性氢自由基的传递规律进行研究,确定沥青质中杂原子基团、稠合芳香环系的加氢途径及沥青质中π键打开方式。首先,选取模型化合物芘、喹啉、吲哚以及苯并噻吩模拟沥青质中稠环芳烃、含硫、含氮杂原子的加氢方式,采用GC-MS对模型化合物液相氢化分解产物分析,结果表明,富氢溶剂可以释放活性氢自由基并主要对含杂原子的杂环进行加氢,致使含杂原子的杂环进一步裂化,甚至脱去杂原子。其次,采用傅里叶变换离子回旋共振质谱对沥青质和可溶质中杂原子化合物分析,并结合模型化合物的反应结果推测了沥青质中稠合芳香环系、杂原子基团的加氢途径:热作用下,沥青质先进行侧链断裂,氢自由基加氢,而后,一部分芳环或杂环发生加氢饱和继而裂化,并脱离沥青质分子成为可溶质,剩下的沥青质大分子自由基可以相互结合作为次生沥青质组分而存在于体系中,或者发生脱氢反应不断缩合直至生焦。最后,采用TEM和XRD对沥青质微观结构进行分析发现,随着反应的进行,沥青质芳香片层结构堆叠程度减弱,似晶缔合体堆叠高度由2.86 nm降至2.39 nm,单元片层数由9降至7,说明富氢溶剂提供的活性氢自由基与稠环芳香体系发生加氢反应,同时杂原子含量降低,削弱了芳香片层间相互作用力,在热作用下,使似晶缔合体发生部分解离,剥离似晶缔合体中的芳香片层结构。综上所述,液相氢化分解工艺有利于环烷基原油沥青质的高效转化,维持胶体体系的稳定。