论文部分内容阅读
日益严峻的能源和环境问题是汽车工业发展所面临的严重挑战。稀薄燃烧因其良好的燃油经济性和排放特性,成为车用汽油机发展的一个重要方向。但稀燃条件下的富氧尾气使得传统三效催化器对NOX转化效率降低,吸附还原型稀燃NOX催化器虽然有较高转化效率,但汽油中的高硫含量易使其中毒。鉴于此,本文进行了稀燃汽油机NOX排放碳氢选择还原(HC—SCR)催化方法的实验研究。在动量计式稳流气道试验台上测量了试验用四缸、16气门产品汽油机的进气流动,并采用Ricardo方法进行了评价。实验证明该汽油机具有较强的滚流性能,为实现稀薄燃烧提供了可能。基于虚拟仪器技术,本文提出了将虚拟仪器和发动机电控系统相结合的新思路,开发构建了基于虚拟仪器技术的准均质稀薄燃烧电控系统,成功实现了准均质稀薄燃烧,稀燃极限达22.5,并为进行选择还原净化稀燃汽油机NOx后处理提供了虚拟仪器催化实验平台。采用原位合成技术制备了分子筛/堇青石整体式稀燃催化剂,并应用XRD、SEM和ICP等方法进行了表征。在进行配气实验的同时,在发动机台架上实验研究了Cu-ZSM5、Cu-Pd-ZSM5、Cu-Rh-ZSM5和Cu-Ir-ZSM5/堇青石整体式分子筛对稀燃汽油机NOx排放的催化特性。实验结果证明,Cu-ZSM5单金属分子筛催化器活性较低,但催化温度特性好,适于作为多金属离子交换的分子筛载体。首次发现钯、铑/堇青石整体式分子筛催化剂组合试样在稀燃温度范围内,NOX的转化效率总体呈现持续稳定趋势,转化率为45%左右。NOX转化温度特性曲线表明:组合实验产生了分段催化的效果,通过将不同活性温度范围的催化剂组合使用,扩大了催化剂起活温度和活性温度窗口。Cu-Ir-ZSM5分子筛小试样催化结果显示,CO参与了NOX的选择还原反应,甚至起到了相当重要的作用。发动机台架实验结果还证明,催化剂抗硫中毒、抗高温以及抗水蒸气能力较强。根据发动机尾气催化的实际需要,采用经工业放大的整体式分子筛催化剂大试样(?82×125mm),并结合三效催化器对稀燃NOX后处理进行研究。稀燃典型工况下,Cu-Ir-ZSM5在空速比为50,000/h时,NOX转化效率最高可达41.6%;同样空速情况下,接有三效催化器时,NOX转化效率在3650C左右时达到最大值51%。在空速比为18,000/h时,最大NOX转化率为71.6%。超过国家“863”立项指南上对NOx选择还原催化转化效率为60%的要求。