新型手性膦配体的合成及其催化构建硅手性中心的研究

被引量 : 0次 | 上传用户:xinduolian1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近些年来,随着不对称催化的蓬勃发展,手性硅烷的合成方法除了传统的化学拆分、底物手性诱导之外,也逐渐涌现出一系列以不对称催化为基础的更为高级的手段,例如通过过渡金属或酶催化的前手性硅烷官能团化以及通过底物或辅基的手性诱导等手段。硅手性中心的光学活性硅烷的合成及应用是有机化学领域一项极具魅力、但同时又颇具挑战性的课题。本论文主要在两类新型手性膦配体的合成及其在手性硅烷的催化构建方面开展了相关研究。我们首先利用手性酒石酸二甲酯与格氏试剂反应,构建了四芳基-1,3-二氧戊环-4,5-二甲醇(TADDOL)的
其他文献
现代社会的环境污染问题和资源短缺问题将来有可能成为限制发展的瓶颈,开发新的清洁的可持续能源迫在眉睫。生物质(纤维素、葡萄糖、果糖等)由于其可再生性被称为“取之不尽用之不竭”的清洁能源,生物质催化转化为有用化学品受到了学者们的广泛关注。5-羟甲基糠醛(HMF)含有羟基、羰基等多个活泼官能基团,可作为部分重要化学品的原料,HMF可由生物质催化得到,因此HMF成为桥接生物质与其他化学品的关键物质,被认为
多孔碳材料由于高的比表面积,优异的电子传导率,良好的化学稳定性等优点在超级电容器的电极材料领域被广泛研究。但与其他类型的电极材料如金属氧化物和导电聚合物相比,基于碳的电极材料的比电容和能量密度仍然较低。为了提高多孔碳材料的电化学性能,一种有效的方法是向材料中引入杂原子和官能团。例如掺杂氮原子,与单纯的多孔碳材料相比,氮掺杂能提高材料的电导率和湿润性,但制备过程耗时,或有危险,活化过程容易对环境造成
从近十几年生物传感器发展历程来看,纳米材料在其中的应用是研究生物传感器的必然趋势。基于纳米材料的生物传感器的优良性能已经决定它们在信息、材料、能源、环境、生物、