可共形二维传输线特性分析及其应用研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:guolsh003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二维传输线(Two-Dimensional Transmission Line,2DTL)由周期结构组成,是一种二维电磁波传播媒质。与传统的利用导线和波导的点对点传输或者利用空间辐射传输的方式不同,电磁波在这种传输线中以慢波的形式传播,通过在传输线表面放置耦合装置的方式可以与其他设备进行通信。二维传输线具有传输频带宽,支持多个耦合器同时工作以及耦合器耦合位置灵活等优点,在近年来蓬勃发展的物联网、传感器网络以及可穿戴装备等技术领域有深远的发展空间。本文以二维传输线结构特点为基础,研究了二维传输线在天线中的应用,并且基于二维传输线设计了功分结构,探究了二维传输线的共形传输特性。本文的主要研究内容有以下几个方面:首先,介绍了二维传输线概念的由来以及发展历程,描述了二维传输在相关应用中的突出优势,介绍了二维传输线的四种主要结构形式及其优缺点,分析了二维传输线中场的特点,阐述其能量耦合原理。其次,研究了两种周期结构单元的色散特性及由其构成二维传输线的传输特性,在此基础上研究了基于二维传输线的漏波天线,通过仿真得到单个漏波贴片单元的辐射效率可以达到40%,分析了双贴片单元辐射功率不均匀的原因,并通过调整贴片尺寸的方法实现了两个贴片辐射功率相同。研究了基于二维传输线的阵列天线,端口相差45°时,矩形排布天线阵列波束偏移z向30°左右,而平行四边形排布的天线阵列波束偏移z方向24°。然后研究了基于二维传输线的功分结构,通过对传输线端口相位的设置,实现了传输线不同功分比的输出。最后探究了二维传输线的共形传输特性,研究了不同周期表面和不同介质厚度二维传输线的共形传输特性,以及共形载体的半径、轴向和类型,对传输特性的影响,测试最终设计的共形传输线,与仿真结果进行对比分析,得出二维传输线线具有很好的共形特性,在较大的曲率范围内传输特性良好,周期表面开孔半径变小、多边形边数减少以及传输线介质层厚度增加,传输线通带频率上移的结论。
其他文献
无线通信技术在军事雷达、卫星通信和移动终端等各个领域中随处可见,并且带动了众多新兴行业的发展。射频前端作为无线收发系统中射频信号和数字信号的转换通路,它的设计对整个通信系统有着重大影响,特别是在导弹制导、相控阵雷达等军事应用中,对射频前端的集成度及可靠性等有较高的要求。为了能够提升无线通信设备的整体性能,对射频前端的相关技术展开研究是非常必要的。本文针对收发系统多频带应用场景,研究设计了一款应用于
近年来,世界上各个国家都在对第五代移动通信技术(5G)进行研究与布局。特别是最近两年,国内以及国外相继建设起了第一批5G基站。应用于5G通信的基站天线可以通过大规模排布阵列来获取高增益并形成波束扫描,以获取更高的通信速率。为了降低成本,通常使用模拟数字混合波束赋形的方案来对天线阵列进行馈电。同时,如果要获取更高的增益,空馈方案可用于超大规模的阵列天线中。但无论阵列是如何馈电,在结合双极化进行设计时
从现代通信技术诞生以来,人们在技术上取得的每一次创新与突破都使人们的生活朝着便捷化和多样化更进了一步。时至今日,第5代移动通信技术开始逐渐应用于生活中的方方面面。随着移动通信终端设备的大规模增加,基站站址和信道容量等资源紧张成为需要解决的问题。面对这样的情况,将具有电扫能力的天线应用到基站中是一种能够有效提升基站通信容量,整合站址资源,为用户提供更优质通信服务的方案。因此,对面向5G通信的电扫天线
低真空管道磁悬浮列车不仅能够突破现有对陆路交通的速度限制,而且还具有耗能少,噪音小等特点。列车的运行状态主要是通过列车与地面控制中心之间可靠有效的无线通信进行管理和控制,但由于本文主要讨论的是低真空管道环境下运行的磁悬浮列车,其与地面控制中心之间的通信模式必然跟普通轮轨列车的通信模式大相径庭。在低真空管道中,影响磁悬浮列车与地面控制中心之间无线通信的主要因素有:管道、天线、多径效应、基站布站技术等
随着我国国民经济和综合国力的快速发展,地下探测工作越来越受到重视,而探地雷达作为一种比较实用的检测设备,有着无损、探测速度快、可以连续成像等优点,便受到了广泛的关注和研究。探地雷达的应用范围相当广泛,可用于工程质量监督、采矿、地下勘察和军事排雷等等,其在促进经济发展和军用两方面起着十分重要的作用。因此,需要加强对探地雷达的研究,不断提升探地雷达的性能,以更好地发挥其实用价值。本文先介绍了探地雷达的
传统天线由于固定的电磁性能,限制了天线的应用,因此亟需新的电磁设计方法来解决现在天线所面临的问题。超表面是一种新兴的结构材料,具备自然界材料所不具备的特性,能够打破传统天线的物理极限,创新了人类对电磁波调控的方式。超表面天线一般采用空馈的方式,但由于在空间中固定的传输路径在不同频率具有不同的相位延迟,且受单元带宽限制,因此它的工作带宽一般都较窄。而随着无线系统的发展,越来越多的应用场景要求天线具有
随着微波通信技术的日益更新和发展,天线被广泛应用于移动通信、无人驾驶、天文探测、国防工业等领域。应用需求的不断增加,使得不光在设计层面,在天线的研制生产中,对精度和性能指标验证的要求也越来越高。增益作为天线的核心指标,高精度的天线测量作为研制生产中的重要一环,这对天线增益测量的准确性和便利性也提出了更高的要求和挑战。微波暗室测量因其全天候和屏蔽性好等优点在过去20年间迅速发展,但在实际的暗室测量过
Ku波段卫星通信地面发射机是卫星通信的重要核心组件,其具体功能是将信道机送来的中频信号变频到所需的工作频段并进行功率放大。本文从项目的应用背景出发,通过介绍该项目在卫星通信领域的实际运用,说明了该项目的发展前景与工程价值。本文介绍了一个关于Ku波段卫星通信地面发射机的设计过程,从指标出发从介绍最终功率放大芯片的选取方法与功率合成网络的实现开始,随后根据其末级功率放大器模块来确定驱动放大器的选取,再
随着系统越来越追求小型化和集成化,天线单元之间的距离变的更近,耦合程度也随之增强,而互耦的存在会恶化系统的整体性能。因此,研究如何在有限空间内使多个天线单元仍然具有很好的隔离度自然成为当下的研究目标,并且具有重要的研究价值和意义。本文以北斗卫星导航系统B3频段天线单元作为实际应用,将工作在同一小型化平台上的多个同频天线由于近距离所产生的耦合影响作为重点研究内容。设计了如何解决由于平台小型化与集成化
针对太赫兹(Terahertz,THz)雷达目标特征与杂波特征的研究主要是对太赫兹回波的研究。太赫兹波定义为存在于电磁波辐射频谱波段中的微波频谱波段和红外频谱波段之间。通常人们认为太赫兹波的频率范围一般为0.1THz至10THz,波长长度范围一般在0.03至3毫米之间。由此可见,相比较于传统的无线微波发射频段,太赫兹频段的发射波长非常短,极易实现超大带宽的超高频率发射信号和窄波束信号,易于直接实现