论文部分内容阅读
进入21世纪,各国对空间的研究越来越激烈,各国的空间飞行探测活动也越来越频繁。空间目标跟踪系统仍然使用传统的齿轮传动,这很容易使得空间中的齿轮之间发生冷焊现象。同时,现有的空间跟瞄系统无法准确追踪目标,传统齿轮传动的可靠性不高,发生故障后的修复比较困难。解决空间目标探测系统存在的空间冷焊和无法精确跟踪目标的问题迫在眉睫。磁悬浮技术可以很好的解决空间冷焊问题,在空间目标跟瞄系统中使用磁悬浮轴承来代替现有系统存在的机械齿轮传动机构,避免了机械接触,解决空间冷焊问题的同时,具有响应速度快、能耗低、噪音小、寿命长等优点。并且为了对于待观测目标位置以及活动情况进行监测,空间目标跟瞄系统中的机电执行元件可以使用可以将电脉冲信号转换为相应的角位移或直线位移的步进电动机,同时设计高性能高细分精度驱动器,实现对步进电动机的高精度细分,实现对于目标的精确定位与追踪。磁悬浮轴承、步进电机、驱动器等构成的高精度磁悬浮跟瞄系统,可以很好的解决空间冷焊问题,同时实现对目标的精确定位与追踪。本文设计了一种基于磁悬浮轴承与步进电机的跟瞄系统,采用磁悬浮轴承,解决在太空低温环境下相互啮合的齿轮之间容易发生冷焊,可靠性不高的问题。采用可控电流源实现高精度高细分数步进电机细分驱动的方法,实现低转速、短距离运动后的停止和启动,建立了三自由度混合磁悬浮轴承的仿真模型,并进行仿真分析。传统的磁悬浮系统中,一般都会使用两个径向磁轴承和一个轴向磁轴承来实现五个自由度的悬浮,但是三个磁轴承会使得转子轴的长度增加,磁悬浮系统的体积增大。采用具有三自由度混合磁悬浮轴承来代替磁悬浮系统中的一个径向磁轴承和一个轴向磁轴承,缩小了磁轴承系统的体积,同时混合磁轴承还有降低功率放大器的功耗,减少电磁铁的匝数的优点,特别适合在小型化,低功耗的系统中使用。设计了磁悬浮跟瞄系统装置,以模块化的思想在matlab/simulink中搭建了两相混合式步进电机驱动系统仿真模型。最后进行实验测试,并对实验结果进行分析和总结。