论文部分内容阅读
精确打击是现代战争大势所趋的发展方向,然而常规弹箭飞行时会在其表面产生流体分离现象,并导致弹身振动,一定条件下还会导致弹箭失稳。虽然弹箭旋转对其表面流体分离有一定抑制作用,但超声速旋转弹箭在飞行过程中其边界层仍有流体分离。因此,超声速旋转弹箭的气动特性以及弹体表面边界层流体分离控制的研究,对超声速旋转弹箭的优化改进具有非常重要的意义。本文基于DES(Detached Eddy Simulation)方法,采用二阶AUSM+格式以及滑移网格技术,对典型的超声速旋转弹箭进行了数值模拟,计算结果与前人实验及相关计算结果相符。在此基础上,对马格努斯现象的产生机理进行了详细讨论,并研究了攻角、马赫数以及转速变化对马格努斯效应及弹丸表面压力分布的影响。然后,通过改变船尾结构的长度与偏角,得到了船尾结构变化对旋转弹丸气动特性的影响。另外,对加装微楔与微叶片两种典型被动式微涡流发生器(Passive Vortex Generator,PVG)和射流主动式涡流发生器(Active Vortex Generator,AVG)后旋转弹箭流场结构进行了数值模拟与分析,揭示了涡流发生器对旋转弹箭边界层流体分离控制的作用机理,发现其可提高常规旋转弹箭的飞行稳定性。主要研究内容与成果如下:通过对典型6.37倍直径长的尖拱圆柱型弹丸数值模拟并与前人实验及仿真结果进行对比,验证了本文数值方法的可靠性。为了更清晰地揭示弹丸旋转的马格努斯效应,数值模拟了典型的6倍口径带船尾的SOCBT弹丸的流场分布。结果表明:船尾对马格努斯效应的影响较大;随着攻角的增大,马格努斯力和马格努斯力矩系数逐渐增大,其中,在小攻角范围内呈线性变化;相同转速,相同攻角情况下,随着马赫数的增大,马格努斯效应对弹丸的影响越来越小;在其他条件相同时,马格努斯力与力矩系数随着转速的增大基本呈线性递增。在此基础上,提出了简单且精度很高的工程估算公式。在研究过程中发现旋转弹丸船尾部位对马格努斯效应影响很大,因此,将标准尖拱圆柱型弹丸作为初始模型,改变其船尾长度与偏角,研究船尾结构对弹丸气动特性的影响。结果表明:添加船尾结构后,弹头迎风面压力增大,导致阻力与升力系数增大,但随着船尾长度的增大逐渐递减;升力系数随着船尾偏角的增大呈递减趋势,而阻力系数在船尾偏角大于5°后,呈周期性小幅波动;马格努斯系数随着船尾长度及船尾偏角的增大,均呈递增趋势;另外,从整体气动系数的变化趋势可知,旋转弹丸的船尾长度合理区间为0.8-cal~1.2-cal,船尾偏角的合理区间为7°~10°,这一结论与现在的常规旋转弹丸相吻合。在标准122mm火箭弹和155mm旋转弹丸弹肩前端分别加装PVGs(微楔),数值模拟边界层流体分离的控制过程,并对比分析了两种旋转弹箭微楔控制效果的差异。通过在155mm标准弹丸的基础上,分别安装了微楔与微叶片两种PVGs,讨论了两种PVGs控制机理以及控制效果的差异。结果表明:旋转弹箭加装微楔后,微楔尾涡产生的流向涡串结构附在弹体表面,可抑制边界层的流动分离;添加微楔后弹箭的升力系数及俯仰力矩系数明显稳定很多,几乎消除了随时间的波动,从而提高弹箭的飞行稳定性。微楔和微叶片两种PVGs的尾涡结构差异很大,作用机理大同小异,均能有效地抑制弹体表面的流体分离,消除升力系数与俯仰力矩系数随时间的波动,提高弹丸的飞行稳定性。数值研究了主动式射流涡发生器对122mm火箭弹与155mm弹丸的边界层流体分离控制效果,模拟了旋转弹箭加装射流控制前后的流场,分析了射流对边界层流体分离的抑制机理及其对旋转弹箭气动特性的改良效果,并探讨了射流的各参数对旋转弹丸控制效果的影响。结果表明:射流控制有利于抑制弹体表面流体分离,减少气动系数波动,有利于提高弹箭稳定性并减少弹身振动。对于火箭弹,射流控制可使其升力系数与俯仰力矩系数明显增大,从而弹轴可以更加快速向速度矢量方向靠拢,提高火箭弹飞行稳定性和射击精度;对于旋转弹丸,射流控制可以提高升力,维持阻力系数保持不变,达到增程的目的,且降低俯仰力矩系数,提高其静稳定性。对比分析了射流各出口条件对控制效果的影响,综合可知在马赫数Ma1.5,射流出口压力Pj=latm以及射流偏角θ30°工况下控制效果较好。