论文部分内容阅读
针对现实中常见的时滞系统以及系统中最常见的一类传感器和执行器故障,本文研究不同时滞系统的故障诊断和容错控制问题。首先综述了故障诊断和容错控制的国内外研究现状,介绍了时滞系统的故障诊断制成果。然后利用最优控制理论、对偶原理、线性矩阵不等式及状态观测等技术,提出了在系统中含有不同时滞情况下的故障诊断和容错控制方法。本文的研究内容概括如下。1.将实际系统中最常见的一类故障进行了总结和抽象,并用“外系统”的概念和状态空间表达式对这类动态特性已知,而初始时刻和初始状态未知的故障进行建模。从而有针对性地对该类故障进行故障诊断和容错控制方法的探讨。2.针对本文所研究的故障和本文所采用的基于观测器的故障诊断方法,研究了故障在两种不同描述情况下的可诊断性条件。根据故障和系统的特征值的不同情况,分别给出了故障的可诊断性判据。为后续的研究打下了基础。3.从线性系统入手研究故障诊断和容错控制问题,提出了一种通过满足误差方程的可观性而构造降维状态观测器的新方法,并将其用于故障诊断从而提出了一种新的能直接诊断出故障的基于降维观测器的故障诊断器。利用前馈-反馈的思想和故障诊断的结果,设计了故障的动态的自修复容错控制律和测量输出补偿律。4.针对含测量时滞的系统的故障诊断和容错控制的困难,提出了一种测量时滞的无时滞转换方法,将时滞系统转化为形式上不含时滞的系统,从而解决了测量时滞系统的故障诊断问题。并利用对偶原理将故障诊断问题转化为状态反馈问题研究,提出了一种最优故障诊断器,该故障诊断器在诊断出系统中发生的故障的同时,能够满足一定的二次型性能指标。利用故障诊断的结果,提出了能根据故障发生的不同情况而进行切换的动态的自修复容错开关控制律和动态的输出测量补偿律。5.针对系统中同时含有测量时滞和控制时滞的情况下的故障诊断和容错控制的困难性,通过引入控制时滞的无时滞转换,并推广应用本文的测量时滞的无时滞转换的结果,设计了该情况下的故障诊断器。提出了一种满足二次型性能指标的动态的最优容错控制的方法,并解决了最优容错控制的物理不可实现问题。6.针对同时含有测量时滞和控制时滞的离散系统的典型代表—网络控制系统,研究了其故障诊断和容错控制的方法。提出了离散系统的测量时滞的无时滞转换方法。通过引入离散系统的控制时滞的无时滞转换,提出了一种新的离散系统的降维观测器的构造方法,从而提出了能直接诊断故障的基于降维观测器的离散系统的故障诊断方法。设计了网络控制系统的动态自修复容错开关控制律和输出测量补偿律。7.针对系统中含有状态时滞的情况,利用对偶原理并结合Lyapunov泛函、LMI等技术,研究了故障诊断器的渐近稳定条件和保性能条件。8.总结本文的主要工作,展望今后的研究方向。