论文部分内容阅读
cBN在硬度和热导率方面仅次于金刚石,同时具有优于金刚石的热稳定性、化学稳定性和抗氧化性,尤其在化学性能方面,对铁族金属是极其稳定的。因此cBN可应用于铁制品的加工和研磨等,作为切削工具材料比金刚石更优越,受到材料研究领域的广泛关注,其工业生产应用领域在不断地扩大。本实验采用原位合成的方法在cBN颗粒进行表面改性,在其表面包覆一层纳米TiN颗粒,从而改善cBN颗粒表面结合性能差的问题。研究了不同条件下,微/纳米cBN-TiO2复合粉体和微/纳米cBN-TiN复合粉体的形成机理及其影响因素。将cBN-TiN复合粉体与Cu粉混合后,采用SPS技术烧结制备得到微/纳米cBN-TiN增强铜基复合材料,研究了不同体积分数的cBN-TiN、烧结温度、烧结压力和保温时间对微/纳米cBN-TiN复合粉体增强铜基复合材料的影响。利用TG-DTA对复合粉体的热学性能进行分析,利用X射线衍射仪、SEM和EDS等对复合粉体和复合材料的物相组成、微观形貌和元素分布等进行表征。对微/纳米cBN-TiN复合粉体增强铜基复合材料的相对密度、显微硬度、抗弯强度、电阻率和摩擦磨损等性能进行了综合测试分析。实验结果表明,以钛酸丁酯为钛源,采用溶胶-凝胶法制备得到微/纳米cBN-TiO2前驱体,其包覆效果均匀,生成过程容易控制。获得最佳的制备条件为:cBN经14mol/L的浓硝酸处理3h后,n[C2H5OH]:n[Ti(OC4H9)4]=10:1, pH=7,水解温度为20℃,n[H2O]:n[Ti(OC4H9)4]=10:1,n[cBN]:n[Ti(OC4H9)4] =3:1。通过TG-DTA分析,确定了cBN-TiO2前驱体以5℃/min的升温速度升至450℃,保温2 h后可以得到微/纳米cBN-TiO2复合粉体。将微/纳米cBN-TiO2复合粉体在氨气气氛中于950℃下氮化5h可完全得到微/纳米cBN-TiN复合粉体。SPS技术烧结制备得到的微/纳米cBN-TiN增强铜基复合材料其相对密度随着微/纳米cBN-TiN复合粉体的体积分数的增加而逐渐减小,显微硬度、抗弯强度和电阻率随着微/纳米cBN-TiN复合粉体体积分数的增加而增加。烧结温度对微/纳米cBN-TiN增强铜基复合材料的性能影响比较大,温度过低时(600℃),微/纳米cBN-TiN复合粉体不能得到很好的烧结,烧结温度欠佳,造成微/纳米cBN-TiN增强铜基复合材料的性能较低;温度过高时(800℃),微/纳米cBN-TiN复合粉体过度烧结,造成Cu基体的熔融,致使复合材料的性能下降。烧结压力对微/纳米cBN-TiN复合粉体的相对密度影响比较大,随着烧结压力的增加,相对密度也逐渐增加,增加到一定程度后,基本保持不变,但是过高的烧结压力会减少模具的使用寿命。SPS最主要的特点就是烧结速度快,所以过长的保温时间对样品的性能也是不宜的。当微/纳米cBN-TiN复合粉体的体积分数为15vol.%、烧结温度为700℃、烧结压力为30MPa,保温时间为5min时,得到的复合材料的综合性能较优,在此条件下得到的复合材料的相对密度为96%、显微硬度为1273.6 MPa、抗弯强度为423-3MPa、电阻率为2.28×10-8Ω·m、磨损量为0.54mg/m。其复合材料的显微硬度较纯铜的874.8MPa有明显增加。