论文部分内容阅读
随着互联网技术进入Web2.0时代,数据以爆炸式的速度快速增长,包括科研数据、政府报告数据、教育数据、移动互联网数据等。数据挖掘、大数据分析、关联分析等技术的发展积极推动了商业和科学领域的发展。近几年,随着教育信息化的发展,各种学习管理系统和在线课程的普遍应用,存储了大量的学习者行为记录数据,并且数据还在不断增长。技术的发展和教育数据的积累形成了教育“大数据”。于是教育研究者们把商业中的数据分析思想借鉴到教育领域中,利用学习分析技术优化学习过程,以期为教师、学习者和教育管理者在教学过程和教育管理中提供帮助。有关适应性推荐的研究,我国有学者结合高校课程开发出学习推荐系统。经过深入研究,发现目前开发的学习推荐系统存在这几个共性问题:系统完全依靠计算机推荐学习内容,缺乏教师的指导和参与;对学习者的个性特征分析不够深入,导致个性化推荐的准确性不高。针对上述问题,本研究以学习分析技术为切入点,以初中物理学科知识为例,采用蚁群算法设计并开发了适应性学习路径推荐系统,系统包含学习者学习和教师干预两大功能。具体内容如下:第1章阐述了研究的问题,在大数据背景下利用学习分析挖掘教育数据的重要性和研究意义,概述本研究的研究思路,利用文献研究法、模型构建法和比较分析法,对本课题展开研究。第2章是对学习分析和适应性学习推荐系统的理论研究和应用研究现状进行述评。通过文献梳理,发现学习分析技术与传统意义上的学习分析的区别主要体现在分析技术和分析工具的使用上,并从国内外学习分析模型中提炼出学习分析的关键要素;通过比较分析目前存在的适应性学习推荐系统的功能和推荐算法,发现这些系统对学习者的个性特征挖掘不够,且缺乏教师干预功能,得出将蚁群算法作为本研究的学习路径推荐算法。通过这部分的研究总结出本文的研究点。第3章是基于学习分析的适应性学习路径推荐系统设计。秉承学习分析与学习过程并重的思想,结合用户模型参考规范和研究目的,以学习风格和认知水平两个主要研究变量设计出学习者模型、结合初中物理学科知识结构设计知识模型。从学习路径推荐、学习资源推荐、学习分析、适应性测试、学习分析结果显示、教师干预等方面具体阐述了适应性学习路径推荐系统的功能模块设计和系统运行过程,为实现适应性学习路径推荐系统做准备。第4章是适应性学习路径推荐系统的核心,具体阐述了学习分析技术支持下的适应性学习路径推荐系统实现机制。依据学习分析目标,归纳学习分析的数据指标、数据来源和类型,然后从五个方面阐述学习分析技术与学习内容推荐的应用过程和方法:利用关联规则挖掘学习资源使用序列得出学习者的学习偏好;利用社会网络分析工具对交互数据进行分析,了解学习者的情感状态和学习态度;根据适应性测试得分、在线学习时间和学习进度构建决策树预测学习结果;蚁群算法实现学习路径推荐和学习资源推荐的原理和参数设置;使用Chart图表插件实现可视化呈现学习分析结果。第5章是基于学习分析的适应性学习路径推荐系统各部分的功能。此部分简单介绍了初中物理学科知识结构、学习资源来源以及系统开发环境和开发工具。从教师和学生两条主线,具体介绍系统适应性学习路径推荐、学习资源推荐、适应性测试、错题回顾、可视化呈现学习分析结果等功能使用过程。第6章提出适应性学习路径推荐系统有效性验证的三种方法。本文建议利用系统中存储的数据,从学习路径推荐的合理性、学习风格推断的准确性、学习效果的检验三个方面检验适应性学习路径推荐系统有效性。第7章是研究总结和研究展望,总结本研究的研究成果和存在的不足,并对下一步研究和发展方向做出展望。