论文部分内容阅读
本论文采用低温基质隔离红外光谱方法研究了一系列过渡金属氧化物-稀有气体络合物。这些过渡金属氧化物-稀有气体络合物是通过将激光溅射过渡金属与O2反应或者直接溅射金属氧化物固体靶产生的氧化物分子冷冻沉积在低温稀有气体基质中获得的。在稀有气体基质中,通过过渡金属氧化物M-O伸缩振动频率的裂分和位移,结合18O2同位素取代实验和量子化学理论计算对产生的过渡金属氧化物-稀有气体络合物进行了归属与表征,并解释了过渡金属氧化物与稀有气体原子间的成键作用机理和规律。本论文制备与表征的过渡金属氧化物-稀有气体络合物包括:(1)ScO+和YO+与多个稀有气体原子形成的[ScO(Ng)5]+(Ng=Ar,Kr,Xe),[YO(Ng)6]+(Ng=Ar,Kr)和[YO(Xe)5]+络合物;(2)3d过渡金属中性一氧化物分子与一个稀有气体原子形成直线型NgMO(M=Cr,Mn,Fe,Co,Ni;Ng=Ar,Kr,Xe)络合物。(3)第VB族金属二氧化物与两个稀有气体原子形成的MO2(Ng)2(M=V,Nb,Ta;Ng=Ar,Kr,Xe)络合物,其四氧化物与一个稀有气体原子形成的MO4(Ng)(M=V,Nb,Ta;Ng=Ar,Kr,Xe)络合物。(4)Xe与(η2-O2)2CrO2超氧化物分子反应,生成(η1-OO)(η2-O2)CrO2(Xe)络合物。这些过渡金属氧化物-稀有气体络合物可以看成是稀有气体原子与过渡金属氧化物之间形成的配位络合物,其中稀有气体原子作为配体,过渡金属作为配位中心。过渡金属氧化物与稀有气体原子间除了静电相互作用以外,通常还包含路易斯酸碱相互作用,即稀有气体原子作为路易斯碱可以提供电子(电子给予体)给金属氧化物中基于金属中心的空的或部分占据的分子轨道(电子接受体,路易斯酸)。按照过渡金属氧化物与稀有气体原子成键价轨道的对称性匹配,能量相近和最大重叠原则,很好地解释了过渡金属氧化物-稀有气体络合物的结构和成键强弱。根据分子轨道理论,3d过渡金属一氧化物参与与稀有气体原子形成络合物的主要是9σ,1δ和4π价轨道,其中9σ轨道是由金属原子的4s和3dz2形成的杂化轨道,1δ轨道主要由金属原子的3d轨道组成的非键轨道,4π轨道由金属的3dπ和O的2pπ原子轨道形成的反键分子轨道。ScO+阳离子的9σ和1δ轨道是全空轨道,能量较低,与稀有气体原子的价p轨道能量较接近,可以与五个稀有气体原子配位形成[ScO(Ng)5]+(Ng=Ar,Kr,Xe)络合物。YO+的σ非键空轨道与ScO+的9σ轨道能量几乎相等,但是YO+的非键δ轨道要比ScO+的1δ轨道能量高,因此,YO+参与成键的主要是球型σ轨道,由于Y比Sc的原子半径大,因此YO+可以与六个Ar和Kr原子形成[YO(Ar)6]+和[YO(Kr)6]+络合物,而与五个Xe原子形成[YO(Xe)5]+络合物。对于3d过渡金属一氧化物中性分子,由于价轨道的能量比ScO+正离子的要高,因此它们与稀有气体原子的成键能力比正离子弱。对于前过渡的ScO,TiO和VO分子,它们的9σ,1δ和4π价分子轨道能量很高,不能有效地与稀有气体原子形成络合物,而对于后过渡金属一氧化物则可以配位一个稀有气体原子形成直线型的NgMO(M=Cr,Mn,Fe,Co,Ni)络合物。类似地,第VB族过渡金属二氧化物可以配位两个稀有气体原子形成MO2(Ng)2(M=V,Nb,Ta)络合物,四氧化物可以配位一个稀有气体原子形成MO4(Ng)(M=V,Nb,Ta)络合物。计算结果表明,稀有气体原子与正离子的结合能比与中性分子的结合能强;对于3d过渡金属一氧化物与稀有气体原子之间的结合能依CrO<MnO<FeO<CoO<NiO顺序增加;对于第VB族V,Nb,Ta金属二氧化物,依Ta<Nb<V顺序增加,而MO2(Ng)2>MO4(Ng);对于相同的金属氧化物分子,依Ar<Kr<Xe顺序增加,这些计算结果表明在稀有气体基质中重稀有气体原子可以逐步取代络合物中的轻稀有气体原子。由于稀有气体原子的配位,影响了过渡金属氧化物M-O键的强弱,从而导致M-O伸缩振动频率发生位移。若稀有气体原子中的电子所给予的是金属氧化物的成键轨道,则紫移;若给予的是反键轨道,则红移,而且位移比较大;若给予的是非键轨道,则位移很小;配位的稀有气体原子个数越多,位移越大。研究结果显示,过渡金属氧化物振动频率位移的多少,与金属和稀有气体原子间结合的强弱并无必然联系,而与稀有气体原子的电子和过渡金属氧化物成键轨道的性质有着直接的关系。