论文部分内容阅读
钴氧化合物因为其独特的结构和性能而引起人们对其进行了广泛的研究。α-Co(OH)2由于具有较大的比表面积和良好的氧化还原特性且资源相对丰富、价格相对低廉而引起了人们的广泛关注。但是在现有的多数制备纳米级α-Co(OH)2的方法中,普遍存在操作复杂、条件苛刻、结构不易控制等问题。四氧化三钴(Co3O4)拥有良好的空电子轨道,容易接受电子对而生成稳定的反应中间产物,促使反应快速地向正反应方向进行,所以Co3O4可以作为一种优良的催化剂材料。但是对于能够兼顾工艺简单、产量高、能耗相对较小以及形貌均一可控的四氧化三钴制备方法依然有待探索。针对以上问题,本文采用简单的钴盐与碱溶液混合的方法制备出纳米级别的球形花状α-Co(OH)2;以花状α-Co(OH)2、细菌纤维素碳(CBC)以及氧化石墨烯(GO)为原料分别制备出Co3O4/CBC和Co3O4/GO纳米复合材料并研究了复合材料对高氯酸铵的催化性能,主要内容如下:(1)以六水氯化钴和氢氧化钠以及氨水为原料,在室温下制备了两种结构和性能优异的α-Co(OH)2颗粒:微米花状α-Co(OH)2和纳米级花状α-Co(OH)2,这两种α-Co(OH)2对AP的热分解表现出了良好的催化作用,当催化剂的添加量为3%时,使得AP的低温热分解过程消失,高温热分解峰分别提前到了264和285℃,较纯AP的高温热分解峰分别提前了175和158℃。(2)以花状α-Co(OH)2为原料,通过水浴法制备了直径约10nm的纳米颗粒,并分别利用CBC和GO为基底,制备出了Co3O4/CBC和Co3O4/GO两种纳米复合材料。Co3O4、Co3O4/CBC和Co3O4/GO均对AP具有良好的催化性能,并研究了不同Co3O4:C对AP热分解性能的影响。得出结论:当CBC和GO的添加量为14%,Co3O4/CBC和Co3O4/GO复合材料的催化性能最佳。当催化剂的添加量为3%时,使得AP的低温热分解过程消失,高温热分解峰分别提前到了289和272℃,较纯AP的高温热分解峰分别提前了150和167℃