【摘 要】
:
猪链球菌能引起猪多种疾病,包括关节炎、脑膜炎和败血症等,在养猪业中能造成较大的经济损失。2型和9型是猪群中猪链球菌优势血清型之一,目前尚缺乏有效的疫苗预防猪链球菌病,
论文部分内容阅读
猪链球菌能引起猪多种疾病,包括关节炎、脑膜炎和败血症等,在养猪业中能造成较大的经济损失。2型和9型是猪群中猪链球菌优势血清型之一,目前尚缺乏有效的疫苗预防猪链球菌病,对猪链球菌致病机理的研究是防控该病的基础之一。本实验室分离的9型猪链球菌DN13,在小鼠体内传了10代后,发现传代菌(SS9-P10)对小鼠的毒力显著增强。本实验室前期已对DN13进行全基因测定和对SS9-P10进行全基因组重测序。生物信息学分析显示,相较于亲本株DN13,含“EEPTTTTTT”重复序列和LPXTG基序的胶原结合蛋白Cbm,在SS9-P10中的非重复区域内发生了较多位点的突变。为研究9型猪链球菌中Cbm的作用,我们利用同源重组方法获得SS9-P10的cbm基因缺失菌株。实验结果发现cbm缺失菌株的生长速度及形态较SS9-P10没有发生明显变化,但是对小鼠的毒力降低。相较于亲本株SS9-P10,Cbm缺失后,小鼠死亡率减少了62.5%,而将cbm基因互补至缺失菌株后,细菌毒力又得到了恢复,但小鼠死亡率为75%,低于细菌缺失cbm前100%的死亡率,表明cbm是猪链球菌毒力相关基因之一,可能参与猪链球菌对宿主的致病。为进一步研究Cbm的致病作用,我们分别表达了不含EEPTTTTTT重复序列和含该重复序列的Cbm蛋白,纯化的两种Cbm蛋白添加氢氧化铝佐剂分别免疫小鼠3次后攻毒,结果显示免疫了无/有重复序列的蛋白的小鼠的死亡率(75%、100%)都显著高于对照组(25%),提示Cbm诱导产生的抗体增强了细菌感染,抗Cbm抗体可能有利于猪链球菌逃避宿主免疫机制。
其他文献
田间育秧是水稻种植的重要环节之一,因工艺简单,育秧成本低等特点,在我国南方稻区应用广泛。在泥浆铺设工序中,需要在田间把泥浆搅拌均匀,然后经过提升、输送和杂质筛分后铺
柱花草(Stylosanthes Sw.)为广泛分布于热带和亚热带地区的优良豆科牧草。自20世纪80年代初,我国大量引进柱花草种质资源,并被广泛应用于土壤改良、水土保持及林草间作。本文
为了减少Al-CuO体系在原位反应过程中容易生成较大尺寸的Al2O3颗粒,因此引入稀土氧化物La2O3,构成Al-CuO-La2O3体系。以La2O3粉、Al粉、CuO粉、Cu粉为原料压制成预制块,纯铜
黄瓜棒孢叶斑病是目前生产中最严重的、最难防治的病害之一。目前,由于该病以化学防治为主,抗药性问题严重,对黄瓜产品造成了污染风险,急需绿色防控产品。本论文以黄瓜棒孢叶斑病为靶标,筛选出1株对其具有较好拮抗效果的芽胞杆菌,并对芽胞杆菌的发酵及喷雾干燥工艺进行优化,进行微粉剂配方的研制以及对黄瓜棒孢叶斑病的防治效果研究,成功研制出设施黄瓜专用的生物微粉剂,主要结果如下:1.筛选并鉴定出1株解淀粉芽胞杆菌
荔枝作为中国南方地区的一种特色亚热带水果,主要分布在广东、广西、福建、海南等省区。在国家推进农业供给侧改革和创新驱动的国家战略背景条件下,实现荔枝采摘的机械化有助
新型高能高密度材料(HEDMs)的要求是在高能的基础上,寻找具有热稳定性,机械感度良好的含能材料。因为通常高能是以牺牲分子稳定性为代价的。如何在高能的基础上实现钝感,一直是研究、探索的方向。氮杂稠环含能化合物因具有大型共轭结构,可以构成平面性良好的分子,从而改善炸药的感度,而受到国内外科学家的广泛关注。本论文主要包括构建新型的氮杂稠环含能化合物,探索其合成方法,通过红外光谱(IR)、核磁共振(NM
随着科学技术的迅猛发展,尖端工业生产逐渐向着微纳米级别的方向发展,其中在微小加工制造和研究的领域内,精密定位技术已成为核心之一。目前各国都对精密定位技术开展研究,尤其在军工、航天等方面,其中微动平台技术被最广泛的使用。针对当前微动平台存在定位精度、刚度以及分辨率较低的问题,设计研制了一种二维微动平台,实现了 X、Y向无耦合纳米级位移输出。具体研究内容如下:采用压电陶瓷执行器作驱动器与双平行四杆柔性
研究背景和目的:目前,骨质疏松症是危及老年人生命与健康的主要疾病之一。另外,临床上骨延迟愈合、骨不连仍是骨科治疗难点。近年来,LMHFV作为一种非药物、非侵入性疗法,对骨质疏松症及骨不连的治疗取得了较好疗效,同时具有副作用小、经济负担低及患者依从性好等优势。我们课题组前期研究显示,生物力学研究上,间歇性低载荷机械振动加载能够更有效地对抗去势或悬吊引发的大鼠骨质疏松。对羊的体内研究也发现LMHFV能
目前低渗/特低渗油藏开发对我国油田开发的意义越来越突出,其储层特征、流体性质与中高渗油藏差异较大,导致渗流机理、油水分布、注水开发方式等与中高渗油藏差异性很大。LPY
NO3-是地表水中的关键氮污染物,其转化与归趋直接关系到水体氮环境行为,而水环境中分布广泛且丰度较高的Fe元素,在微生物介导的Fe-N循环中扮演着重要角色。缺氧环境中,NO3-是