Dynamic Queue Length Estimation Using Gps and Lpr Data

来源 :东南大学 | 被引量 : 0次 | 上传用户:compasion
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Real-time and accurate queue length information is very imperative in evaluating the performance and to develop adequate queue management systems,especially under the congested condition in an advanced traffic control system.Many intelligent mobility technologies such as automatic number plate recognition systems and automatic vehicle identification systems for queue length estimation,have received tremendous attention due to their active deployments in recent years.A machine learning algorithm based real-time dynamic queue length estimation was proposed using the GPS and license plate recognition(LPR)data.Compared to the former shock-fitting methods,the proposed method is fully data-driven,robust,and no need for any prior knowledge or assumptions about the shockwave behaviors.In this research project,the stop locations of vehicles and 18 representative features of traffic flow characteristics around the vehicles were extracted from GPS and LPR data respectively for the training of the machine learning algorithm model.After that,a feature selection has been carried out through extracted features with the help of different feature selection techniques to remove irrelevant or redundant features,which could be harmful or at least have no contribution to the accuracy of the model.Based on the best-selected features,a Random Forest and Support Vector Regression model had been trained,and then a trained model was used to predict the stop locations of vehicles using the LPR data as input.The cyclic lane-based maximum dynamic queue lengths were estimated based on the predicted stop locations.The proposed method was implemented for thirty-nine lanes in Kunshan city,P.R China.Key findings and conclusion include:(1)By the feature selection process,the travel time in control delay feature categories had the most significant impacts on the prediction accuracy of the Random Forests model.The travel time of the leading vehicle as well as travel time of the labeled vehicle was strongly related to vehicle stop locations,for both left-turn and through lanes.Besides the travel time,the average headway of departed vehicles for both left-turn and through lanes,between two labeled vehicles in one previous cycle was also identified to have a greater contribution to model prediction accuracy.This particular feature belongs to the arrival flow category.(2)In a comparison with the performance evaluation of applied Machine Learning Models(Decision Tree,Random Forest,Linear Regression,Support Vector Regression(SVR)),the Random Forest and SVR model achieved a satisfying accuracy for the stop locations prediction with performance measures including MAE,RMSE,and MAPE.With the trained Random Forest and SVR model,the stop locations of vehicles can be successfully estimated with the collaboration of real-time LPR data.The MAE and MAPE of the lanes with the most train samples achieved the most accurate results.(3)On the basis of obtained stop locations,two lanes from thirty-nine lanes in total with satisfactory MAPE percentage scores were selected for dynamic queue length estimation phenomena.By evaluating the estimated maximum queue length on two lanes with the ground truth data,the MAE and MAPE were 13.2 meters and 14.5% for the left-turn lane and 7.2 meters and 11.9%respectively for the through lane.
其他文献
在变电站向着无人值守方向发展的背景下,机器人智能巡检系统逐渐代替传统的人工巡检方式。本文针对电力巡检机器人如何在多种情况下实现自主定位和移动展开研究,设计了基于视觉导航的路径随控系统与全局路径规划的巡检方法,并从系统应用角度对设计方法进行了验证,研究内容主要包括如下方面:(1)变电站的环境建模与路径规划。针对系统应用需求,对机器人巡检路径规划等问题展开了分析,结合系统特点和变电站环境空间条件应用V
近年来,随着我国逐步加快住宅产业化发展,装配式钢结构建筑因其绿色环保且适宜于产业化发展等优点,得到大力推广。目前在工程中广泛使用的压型钢板—混凝土组合楼板、钢筋桁架—混凝土叠合楼板和预制预应力—混凝土叠合楼板三类装配式楼板在实际运用中都存在装配化程度低、现场湿作业工程量大和管线集成化程度低等问题。针对上述问题,本文在对国内外压型钢板—混凝土组合楼板和双向密肋楼板的已有研究基础上,结合压型钢板—混凝
Land contamination from human activities constitutes one of the biggest problems facing the world today.It gets worse with each passing year raising health damage to the human beings and ecosystem.In
学位
城市暗河修复是城市水系环境修复的重要组成部分,论文主要围绕暗河修复这一课题开展了多维度的综合研究。论文首先综述了与城市暗河相关的学术及实践背景状况,对已有的城市暗河修复研究及实践案例进行了理论总结,并以此为基础构建出城市暗河修复的方法框架和实践过程体系。其次,研究选择无锡老城区作为案例研究对象,在对老城区范围内的水系历史和现状环境分别进行研究的基础上,提出适用于无锡老城区暗河修复的工作框架。工作框
机载导弹是现代战争中的主力武器,在战区军事防御和进攻中发挥着重要作用。捷联惯导系统因其结构简单、可靠性高等特点,被广泛应用于各类机载武器中。传递对准是惯性导航的关键技术之一,其快速性和精度是机载导弹能够精确命中的重要保证。本文以机载捷联惯导系统快速传递对准技术为研究主题,围绕传递对准模型、传递对准的误差分析与补偿以及自适应滤波方法展开研究,旨在提高传递对准的快速性和精度。论文主要内容如下:(1)建
近年来我国城市轨道交通网络的建设方兴未艾,桥梁作为其中的关键结构,由于其桥位环境的特殊性,潜在风险源多,一旦发生工程事故,将造成巨大的经济损失和社会影响。实践证明,很多事故或问题都与设计存在一定的相关性,然而,我国目前城市轨道交通桥梁的风险评估方法研究尚处于起步阶段。为降低轨道交通桥梁设计安全风险,有必要加强对其安全风险分析与对策研究,建立和完善设计风险控制体系。本文系统性地研究城市轨道交通桥梁在
London Underground,better known as the Tube,has 11 lines covering 402 km and serving270 stations.The Tube handles up to five million passenger journeys a day.At peak times,there are more than 543 trai
学位
无线Mesh网络是一种高容量、高速率的分布式网络,拥有自组织、无基础设施、扩展性强、自愈性强等特点,被业界认定为将提供更好服务的下一代无线通信网络。作为无线Mesh网络各节点间进行互连和数据传输的关键,路由协议对提高网络整体性能有着非常重要的意义。无线Mesh网络路由协议的主要职责是建立和维护网络中各节点的多跳路由,为数据报文的转发提供可靠依据。路由判据是路径选择和切换的重要判断因素,其采用合理的
预应力自复位结构通过预应力钢绞线的预拉力实现结构功能的快速恢复,地震中能防止主结构的损伤,减少残余变形。预应力自复位结构通过设置耗能元件来消耗地震能量,以往研究多采用单一耗能元件,如利用角钢的弯曲变形耗能、钢板剪力墙的斜向拉力场耗能、摩擦连接件的滑移摩擦耗能。然而,单一耗能元件在地震中往往损伤严重,甚至引发断裂。本文提出一种能同时以摩擦和弯曲方式联合耗能的T型钢作为自复位结构的耗能元件,在提高结构
Over the years,efforts have been made to study stress as a potential human psychological aspects that possibly effect the routine life of people in different ways.There still exists a wide gap for suc
学位