基于ISAR序列成像的空间目标状态估计方法研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:JohnWaken19
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
空间目标状态估计旨在精确实时地获取目标在轨姿态、结构几何和非平稳状态下的运动参数,为目标动作意图分析、潜在故障威胁排查、航天态势发展预判提供有力信息支撑,是当前空间态势感知领域的核心技术。地基逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)具备全天时、全天候、主动式空间探测能力,通过窄带精密跟踪、宽带高分辨成像的工作模式为目标状态分析工作提供观测支持。研究基于ISAR成像的空间目标状态估计方法对我国空间态势感知技术体系建设发展、维护太空资产健康运行具有重要意义。现有公开的地基ISAR观测空间目标状态估计方法研究以对目标大致运动状态评估为主,目标状态参数估计依赖于观测数据与历史积累观测数据库的特征匹配,缺乏观测物理模型支撑,估计精度受限,推广至复杂运动目标、非合作目标等实际应用场景存在困难。立足于实际地基ISAR装备,亟需研究结合雷达成像机理、充分挖掘目标在轨状态与雷达观测数据内在联系、适用于复杂应用场景的空间目标状态估计技术。针对以上研究现状及应用需求,本文围绕空间目标在轨状态估计这一核心问题,面向国家自然科学基金面上项目“空间目标序列ISAR成像与信息提取技术研究”、国家“十三五”装备预研项目“XXX成像特征提取与识别技术”、国家高技术研究发展计划(863计划)项目“XXX成像与信息获取研究”等课题、项目的研究任务,结合现役地基空间观测ISAR体制特点,在雷达信号处理、ISAR图像解译、光电信息融合三个方面展开研究。全文研究循序渐进,依据问题复杂程度先后探讨空间目标处于稳定姿态以及非稳情况的在轨状态参数估计问题,具体研究内容可概括为以下四个部分:1.空间目标ISAR成像序列投影的目标姿态估计第一部分研究空间目标ISAR高分辨序列成像观测的几何特点,从空间目标ISAR成像投影特征反演的思考角度,提出了基于ISAR图像投影形态的目标姿态估计方法,建立了目标在姿态稳定情况下状态参数与其典型部件在ISAR图像内投影形态间的显式表达,通过分析单站ISAR观测图像序列内目标投影的连续变化,克服传统方法在长时间ISAR图像序列处理中面临的散射点特征关联困难问题,实现目标在轨姿态参数的准确估计。2.空间目标ISAR成像二次相位的目标姿态估计第二部分从空间目标ISAR成像散焦特征解译的思考角度出发,提出了基于ISAR图像二次相位的目标姿态估计方法,建立了观测图像内目标散射单元散焦的信号模型,推导了在姿态稳定情况下目标ISAR图像二次相位与其在轨姿态间的显式表达,通过解译被视为“负面信息”的图像二次相位,实现了小角域测量条件下的单帧ISAR图像目标姿态参数估计,为雷达成像、图像解译领域研究提供了一个新的视角。3.多站ISAR联合观测下的自旋空间目标瞬时状态估计第三部分在第一、第二部分针对姿稳空间目标姿态估计的研究基础上,深入研究自旋空间目标状态估计问题。该问题的核心在于如何解决目标在轨自旋引起的ISAR成像几何变化给目标状态估计带来的困难。本部分引入多站点ISAR联合观测补充了雷达观测角度资源,将高维目标状态参数估计问题分解为瞬时姿态和自旋运动参数的优化子问题。通过建立多站ISAR观测图像内目标距离、多普勒维度投影和空变二次相位特征与其在轨状态参数的显式表达,解决自旋状态下因观测成像平面变化造成的姿态估计与运动估计耦合难题,验证了多站ISAR联合观测在空间态势感知应用上的优势。4.光学-雷达联合观测下的空间目标状态估计与三维重建第四部分借鉴计算机视觉领域多视角图像场景重建技术,类比光学、雷达成像几何,探究了相同视角下光电图像特征融合的目标状态估计方法。首先,深入分析光学、雷达成像系统在同一视角下观测信息的互补联系,提出了基于单站光电融合的自旋目标状态估计方法,解决了针对空间自旋目标态势感知中因目标自身自旋运动带来的ISAR成像平面不定这一核心问题。而后,对比分析了光学与雷达多视角成像观测场景的相似性,提出了基于多视角ISAR图像序列的目标三维重建方法,建立了目标在多视角ISAR图像序列内轮廓与其在真实空间中三维结构间的联系,并将该方法拓展至光学-雷达联合观测模式,有效解决单站单圈次ISAR观测视角受限问题。光学-雷达联合观测体制突破了单传感器在空间目标观测中成像几何约束的局限性,为后续多传感器协同的空间目标态势感知网络建设提供了思路与技术支撑。
其他文献
随着信息技术、计算机技术和通信技术的持续快速发展和广泛普及,形成了具有开放性、异构性和多安全域等诸多特性的复杂网络环境。复杂网络环境中,各种信息系统协同运作使得数据在不同系统、不同域的访问流转日益频繁。数据在跨系统跨域访问流转中面临着各种安全问题,如非法流转及流转后非法操作造成数据泄露、数据泄露后难以发现等。这些安全问题严重影响了新服务模式的推广使用。针对上述数据跨域流转的安全问题,本文从访问控制
分层粗糙面及其与目标的复合散射和成像在雷达探测、目标识别、微波成像等领域有着非常重要的理论意义和应用价值。对于探地雷达探测中分层粗糙面以及分层粗糙面与埋藏目标的宽带复合电磁散射,采用时域有限差分法进行建模和计算,可以方便地处理包括不同粗糙度分层粗糙面与不同形状大小、不同介电属性目标所组成的较复杂的媒质模型,且计算精度高。时域有限差分法是一种便于处理宽带散射的时域方法,能够很好地适应探地雷达探测主要
金刚石作为超宽禁带半导体材料,具有超强的抗辐照特性、皮秒级的超快时间响应、极高的热导率、极高的击穿场强,使其成为下一代强辐射场核探测器的理想材料。随着化学气相淀积(CVD)合成金刚石技术的发展,CVD金刚石核探测器在高能粒子探测、强辐照高温环境探测、脉冲场探测等多种应用场合表现出明显优于传统硅基核探测器的性能。金刚石核探测器研究的一个关键问题,是金刚石核探测器的性能不一致性巨大且机理尚不明确,高性
干涉合成孔径雷达(Interferometric Synthetic Aperture Radar,InSAR)是一种成熟的遥感技术,它能够高度精确的测量如地形、地表形变以及冰川运动等重要的地球物理参数。雷达系统的观测信号为相位主值,因此相位解缠绕(Phase unwrapping,PU)成为InSAR技术中不可或缺的关键步骤,其求解性能也直接决定了后续遥感产品的性能。在过去几十年中,传统的单基线
自上世纪90年代以来,涡旋光束因其携带的轨道角动量,在光通信、光学微操控、光信息处理等方面具有重要潜在应用价值而得到了广泛关注。对自由空间光通信而言,涡旋光束可以极大地提高信道容量,但由于大气湍流对光束相位的随机扰动,引起了光斑扩展、光束漂移、光强闪烁等一系列常见湍流效应,此外对涡旋光束相位的扰动还会造成螺旋谱弥散、模式纯度降低,这些传输效应对光束的通信性能造成了极大的影响。为了分析大气湍流对涡旋
多输入多输出(Multiple Input Multiple Output,MIMO)雷达采用发射分集技术,可以有效实现系统自由度的扩展,其灵活可控的工作模式能够适应复杂多变的工作环境。新体制发射分集MIMO雷达成为近些年来热门的雷达系统之一,通过引入频率偏移量或时间偏移量,进一步扩展发射自由度,实现多维域性能提升,为现有MIMO雷达发射方向图设计,复杂度高,多普勒容忍性较差等问题提供了新的解决途
现代战场电子环境日趋复杂,雷达干扰和抗干扰技术在斗争中不断演化。其中,欺骗式干扰,尤其来自主瓣方向,是一种极具威胁的干扰方式。随着数字射频存储器(DRFM)技术日渐成熟,显著增强了欺骗能力。通常,干扰设备对雷达系统发射波形进行复制并延迟转发产生虚假目标,给鉴别真、假目标信号及干扰抑制带来了困难。机械扫描雷达到相控阵雷达直至多输入多输出(MIMO)雷达的革新,增加了系统可控自由度,扩展了阵列雷达系统
随着大数据、云计算、物联网、智能终端的快速发展,人类的生活、工作方式将彻底改变。然而,各个领域的快速发展也带来了新的安全威胁。本文基于分层检测,整体协同的思想,设计了点、线、面三层的入侵检测体系架构,分别对单一目标网络、不同本地网络之间(时间,空间)以及本地网络与云平台之间的入侵检测进行较为深入的研究。本文所取得的主要研究成果如下:1.针对现有未知攻击检测方法仅定性选取特征而导致检测精度较低的问题
氮化物半导体因其优异的特性在发光二极管(LED)领域已经取得了巨大的成就,开启了全新的照明时代。特别是近年来,基于In GaN和AlGaN的紫外LED由于具有不含汞、体积小、功耗低等优势,广泛用于固化、真伪检验、杀菌、消毒等领域,已成为新一代固态紫外光源的重要选择,受到了业界广泛关注。然而,长期以来,实现具有高可靠性的氮化物紫外LED一直是业界的核心挑战之一。由于氮化物中普遍存在高密度位错缺陷和点
由于臭氧层对200~280 nm波段紫外辐射的完全吸收,此波段在大气层中几乎不存在,因此我们称之为“日盲”波段。基于此波段的紫外探测器由于具有背景噪声低和虚警率低等优点,其在紫外制导、紫外空间预警和导弹预警等军事领域和在高响应火灾预警、电晕检测、大气环境监测等民生领域有着广泛的应用前景,并受到研究者的广泛关注。在众多宽带隙半导体中,β-Ga2O3作为一种新型超宽禁带半导体材料,其独特的化学和物理特