CoCrNiAl0.1Si0.1中熵合金低温和动态力学响应研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:papaya007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高、中熵合金是一类新型多主元金属材料。由于其独特的组织结构和优异的力学性能而引起了科研工作者的广泛关注。本文以纯度大于99.9%金属原料通过真空电弧熔炼炉在真空环境中制备了铸态CoCrNiAl0.1Si0.1中熵合金(MEAs),通过均质化,冷轧、退火、电火花切割机等加工工艺获得拉伸试样。利用力学拉伸试验机进行室温(298 K)和低温(77 K)下的准静态拉伸试验,利用霍普金森拉杆在室温下进行动态力学试验。采用X射线衍射(XRD)、电子背散射衍射(EBSD)和透射电镜(TEM)对变形前后试样的微观结构进行了分析。重点讨论其屈服强度和应变硬化的温度依赖性以及强应变率敏感性,采用本构模型描述了屈服强度和应变硬化与温度和应变速率的关系。本研究得到的重要结果如下:(1)CoCrNiAl0.1Si0.1MEAs在低温77 K准静态拉伸载荷下表现出显著的强度和塑性同时提升。与室温下相比,屈服强度从480 MPa提高到700 MPa,抗拉强度从950MPa提高到1250 MPa,延伸率从58%提高到72%。在室温动态拉伸加载条件下,随应变速率从10-3s-1增加到3000 s-1,CoCrNiAl0.1Si0.1的屈服强度而从476 MPa增加到590MPa,表现出正应变速率敏感性(SRS)。试样断裂后的延伸率也表现为正的SRS,均大于70%。(2)CoCrNiAl0.1Si0.1MEAs严重的晶格畸变诱导Peierls晶格摩擦应力。热振动使得位错核的有效宽度减小,从而导致Peierls势垒高度随温度降低而增大,同时,共簇和/或短程有序(SRO)的存在也是位错运动的热障碍,最终导致77K加载下屈服强度的显著提高。(3)CoCrNiAl0.1Si0.1MEAs强应变率敏感性由热激活机制和位错阻尼机制共同控制。热激活分析表明高,中熵合金的激活体积远小于传统FCC金属。这与合金严重的晶格畸变,以及短程有序或短程团簇的存在有关。此外,粘性声子阻力在动态加载下对位错运动有很强的影响,导致流动应力的增加。(4)298K条件下,CoCrNiAl0.1Si0.1MEAs的主要微观变形机制是位错胞、变形孪晶以及孪晶与位错的相互作用。77K时,高密度位错、纳米孪晶、二次纳米孪晶和微带等多种机制共同作用,促进了合金稳定的应变硬化和显著的塑性变形;动态加载下的变形机制是高密度位错以及大量的变形孪晶,变形孪晶能够显著地提高加工硬化能力并延迟塑性不稳定的发生,这是目前合金动态加载下优异强度塑性结合的原因。此外,建立了基于位错密度和孪晶体积分数演化的本构模型,预测了CoCrNiAl0.1Si0.1MEAs在常温和低温下的塑性流动行为,并识别了相应的参数。采用粘塑性唯象Johnson-Cook本构模型预测了动态加载下合金的塑性流动。两种模型的拟合结果与实验结果吻合较好。
其他文献
6系铝合金(Al-Mg-Si)作为一种良好导电材料,不仅具有较高的导电性,而且具有轻质高强、耐腐蚀性好的特性,所以被广泛应用于长距离输电线和各种其他电气工程领域。本文主要通过轧制工艺、热处理、脉冲电流热处理等方面调控合金微观组织,使6201铝合金能够同时获得优良的力学性能和导电性能。为新型高强高导电性铝合金导线的制备提供理论和工艺基础。本文采用不同重力铸造法熔炼制备了6201铝合金(Al-0.59
学位
镁合金具有密度小、高比强度和比刚度、电磁屏蔽性好等优良的性能,被广泛应用于机械、通讯和航空航天等领域,但镁合金在室温下成形性能较差,这在一定程度上限制了它的应用。本课题以具有基面织构的AZ31镁合金板材为研究对象,通过“弯曲限宽矫直”的工艺方法对初始板材沿着轧制方向施加压应力,使板材产生横向缩短、厚度方向增厚的变形,以实现在板材中预置拉伸孪晶,从而改善板材成形性能。本文观察并分析了镁合金板材在“弯
冲击、爆炸等载荷的安全防护需求在国防和民用领域日益提升,金属材料被广泛应用在防护结构中。极端环境下防护结构的安全评估需要对防护材料的力学性能做全面的研究,理论、实验、数值计算结合并用成为全面有效的研究方法。可靠的数值计算依赖于能够准确描述材料力学行为的模型,建立材料的本构模型和失效模型又需要全面和准确的实验数据。因此本文以6061 H32铝合金为研究材料,通过较为完备的实验得到了材料的本构模型和失
新型beta-gamma TiAl合金具有细小均匀的组织、优良的高温变形能力以及优异的机械加工性能等优点,拓宽了TiAl合金的加工窗口。然而,大量β相稳定元素的添加,使得beta-gamma TiAl合金组织的高温稳定性降低。在长期热暴露条件下,α2/γ片层结构会发生不连续析出,使得α2/γ片层结构被破坏分解,恶化合金的力学性能,不利于合金的大规模工程化应用。因此,系统研究片层结构的不连续析出行为
本文在分析屯兰矿选煤厂煤质特征和选煤生产工艺的基础上,针对选煤厂现有生产系统各分选环节和煤泥水处理过程中存在的问题分析,提出了基于重介质悬浮液密度智能控制、重介质悬浮液黏度智能控制、合格介质桶液位智能控制以及重介质旋流器入口压力智能控制4个控制模块构成的重介分选系统智能化控制方案;以干扰床层密度和精煤灰分为控制对象的粗煤泥TCS分选系统智能控制系统;基于浮选入料量、浮选入料浓度、浮选药剂添加以及浮
高熵合金具有优异的力学性能,如高硬度、高强度、高电阻率、优良的耐磨损能力、优异的磁性能以及高温力学和抗氧化性能等,这也使得高熵合金成为了近些年的研究热点。尽管对CoCrFeNiMn高熵合金已经有了大量研究,关于合金在高温动态下的力学响应仍不清楚,需要进一步的研究来解释合金的高温动态力学行为。另外高熵合金在微尺度领域有着广阔的应用前景,了解高熵合金的微观机理也成为了高熵合金的研究重点,据此本文研究了
挤压铸造又称为液态模锻,是一种介于铸造与锻压之间的工艺,它同时具备了铸造与锻压的优点,成为一种少切削或无切削的近净成形技术。采用计算机技术模拟金属液在挤压铸造型腔中的流动情况,可以更加直观的观察金属液的流动情况及其温度的变化过程,并预测挤压铸件可能出现的缺陷,帮助技术人员根据存在的问题对挤压铸件结构和工艺设计方案进行改进,以期获得合格的挤压铸件,提高产品质量与生产效率。因此对挤压铸造的充型过程、温
南关矿西翼皮带巷作为西翼三采区重要运输、行人通道,长期以来受到动压、软岩等不利条件影响,巷道顶板变形破碎严重,两帮破碎片帮,底鼓严重,历经多次维修加固,导致围岩-支护系统完全失效,巷道围岩的维护周期愈加频繁,本文从巷道围岩破坏程度进行研究,分析围岩中存在的弱面结构、裂隙发育以及应力转移和集中分布特征,从支护对策上采取锚注支护技术手段,尽可能地发挥围岩的自承能力而不必采用重型型钢支架去硬抗,同时注浆
当今社会在推动经济高速发展的背后,也伴随着煤炭资源的大量消耗,虽然世界各国提出采用新能源的方式来替代传统煤炭资源,但是由于新能源的不稳定性导致煤炭资源仍旧占用主导地位。在煤炭资源的开采过程中,一般会使用大量的大功率设备,这些设备在运行过程中将会消耗大量的无功功率,进而导致设备运行效率降低,甚至影响煤矿企业正常生成。传统无功补偿过程中普遍采用电容器进行无功补偿,但是这种装置在无功补偿过程中,动态性能
高熵合金,又称为多主元合金,自2004年发现以来,由于其优异的综合力学性能,逐渐引起了人们广泛的关注。一直以来,强度和塑性之间的矛盾是合金强韧化难以克服的问题之一。最近研究发现,梯度结构高熵合金基于其独特的变形机理,可以在一定程度上实现材料的协同强化。梯度结构高熵合金由于粗层晶与细晶层的协调作用,避免了层与层之间变形不协调而引起的材料性能突变,由此实现了合金的强韧化。本文利用扭转试验机对Al0.1