论文部分内容阅读
在科学试验和工业生产中,多维力传感器得到了广泛的应用。但随着技术的发展,应用中需要对多维力进行动态测试的场合越来越多,这就对多维力传感器的动态特性提出了很高的要求。然而,目前最常用的应变式多维力传感器的动态响应速度慢、超调量大,且存在维间动态耦合,无法满足动态测试的要求。对此,本文主要分析了应变式多维力传感器的动态特性,并就现有动态校正方法在应用中存在的问题进行了研究,对动态补偿、动态解耦和动态标定方法进行了改进。在动态补偿方面,本文提出了一种新的基于系统辨识和误差超限模态校正的方法,以解决现有方法有时不能同时提高时域跟随性能和拓宽频域测量带宽的问题。该方法将动态补偿过程分为一次补偿和二次补偿。首先,通过系统辨识方法得到一次补偿器,在全频带内对传感器进行一次补偿;然后,构造一个具有统一结构二次补偿器,有针对性地补偿限制传感器测量带宽的误差超限模态。具体讨论了四类二次补偿器的构造方法,并说明了多个二次补偿器的循环构造过程和传感器动态补偿流程。在动态解耦-补偿方面,本文提出了一种基于预矩阵的迭代动态解耦-补偿方法,先对传感器进行迭代动态解耦降低其动态耦合误差,然后进行动态补偿降低其主通道动态误差,着重研究了迭代动态解耦过程中迭代的敛散性问题。针对现有迭代动态解耦方法在应用中有可能不收敛的问题,本文在此基础上引入预矩阵P(对角阵)以改变耦合矩阵在某些特定频率点的幅值,从而改善迭代解耦的收敛性。另外,本文还对力传感器的动态标定方法进行了改进,利用冲击剪断装置替代人手去剪断钢丝来产生阶跃力/力矩信号对传感器进行动态标定,并设计了检测电路来测量阶跃信号的阶跃边沿时间,以提高传感器动态标定的精度,从而为将来传感器的动态特性研究提供更好的依据。最后,以ATI Mini45多维力/力矩传感器为例,验证了上述方法的有效性。针对ATI Mini45传感器动态标定的实验数据研究结果表明,动态解耦-补偿后,传感器力和力矩方向的动态耦合率和耦合干扰的均方根误差都下降了70%以上,各通道的阶跃调节时间从几百毫秒缩短到3毫秒以内,超调量也从80%以上降低至5%以内,并将带宽从30 Hz左右扩大到100 Hz左右。因此,本文所研究的动态校正方法是切实可行、有效地。并且,针对ATI Mini45传感器的阶跃卸载测试实验也表明本文所改进的传感器动态标定方法能够有效提高传感器的动态标定精度。