一种无铼镍基单晶合金的蠕变行为及影响因素

来源 :沈阳工业大学 | 被引量 : 9次 | 上传用户:xjc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文通过热力学及TEM方法测算了Ni基合金的层错能,并对[001]取向的镍基单晶合金、P-型结构单晶合金进行蠕变性能测试和SEM、TEM形貌观察,研究了合金元素、层错能对镍基单晶合金稳态蠕变期间位错运动内摩擦应力及蠕变特征的影响,考察了组织结构对单晶合金蠕变期间组织演化规律及蠕变寿命的影响,并对合金的变形机制进行了深入讨论。得出如下结论:单晶合金在凝固期间形成的共晶组织由条状粗大和细网状γ/γ’两相构成,其中粗大的γ/γ’相由包晶反应生成,细网状γ/γ’共晶组织形成于共晶反应。铸态单晶合金在枝晶臂/间存在明显的成分偏析和γ/γ’两相的尺寸差别,致使铸态合金有较大的晶格错配度。通过差热曲线分析及尝试法,制定出合金的热处理工艺。经完全热处理后,元素的偏析程度明显减少,且立方γ’相以共格方式嵌镶在γ基体相中,且均匀分布,可使合金的晶格错配度减小。元素Al可明显降低Ni-Al-M合金的层错能,随着Al含量的增加,合金层错能降低的幅度增加,随温度提高,合金的层错能增加;其中元素Al降低合金中原子的偏聚自由能,促进γ’有序相的形成是降低Ni-Al-M合金层错能的主要原因。高层错能合金有较低的内摩擦应力和蠕变抗力,随层错能降低,单晶合金的内摩擦应力和蠕变抗力提高,并延长蠕变寿命;与其它合金比较,设计及制备的低层错能无Re镍基单晶合金具有较高的蠕变抗力,在1040℃、137MPa条件下的持久寿命达到1280h。在中温高应力蠕变期间,该合金的变形机制是位错在γ基体中运动和剪切γ’相,切入γ’相内的<11O>超位错即可在{111}八面体晶面滑移,也可在{100}立方体晶面滑移;当(1/2)[110]位错在γ’/γ两相界面切入γ’相发生分解,可形成(1/3)<112>超肖克莱不全位错加层错的位错组态。而在高温低应力的蠕变初期,合金的变形机制是(1/2)<110>位错在γ基体通道的八面体滑移系中以交滑移方式运动;γ’相形成筏状结构后,合金的变形机制是位错攀移越过筏状γ’相;而蠕变后期,合金的变形机制是<110>螺、刃型超位错剪切γ’相。在蠕变期间,P-型结构合金发生了复杂的组织演化,其P-型γ’相转变成具有较短尺寸的N-型筏状结构,使位错易于滑移越过γ’相,是使P-型结构合金具有较高应变速率和较短蠕变寿命的主要原因。在实验的温度和应力范围内,与P-型结构合金相比,完全热处理态合金具有较低的应变速率和较长的持久寿命;分别计算出热处理态合金和P-型结构合金在稳态蠕变期间的激活能分别为Q_a=462kJ/mol和Q_a=412.5 kJ/mol,表观应力指数分别为n_a=3.5和n_a=5.2。在拉伸蠕变期间,不同成分合金中γ’相具有不同的定向粗化速率,随合金中Ta+Mo含量及Ta/W比值的增加,溶质元素(Al、Ta)的扩散及γ’相的定向粗化速率降低。拉伸蠕变期间,类立方γ’相中与施加应力轴垂直的界面受水平切应力,使晶格收缩可排斥较大半径的Al、Ta原子;与应力轴平行的界面受拉伸张应力,使晶格扩张可诱捕较大半径的Al、Ta原子,由此引起的原子偏聚形成γ’相是自由能降低的过程;其中,较大半径的Al、Ta原子扩散迁移至{100}晶面,形成异类原子结合键及稳定的堆垛方式,是促使γ’相形成N-型筏状结构的主要原因;而γ’相不同界面的应变能密度变化是元素扩散及γ’相定向粗化的驱动力。
其他文献
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
20世纪90年代之后军旅文学创作发展迅速。无论是女性形像的书写还是女性作家作品的发表都让我们看到女性叙事的凸显。本文将围绕“女性叙事”通过对女性军人形象、与军人有关
本论文根据镁合金研究的现状及存在的不足,以高性能变形镁合金材料作为研究方向,将新型铸造技术——电磁搅拌、悬浮铸造应用到高性能变形镁合金的制备中,形成一种高效、无污
加速冷却过程是利用钢材余热,通过控制钢板冷却工艺曲线,达到批量生产具有特定性能钢板的目的。这种系统具有输入输出变量多、产品规格多样、系统影响因素多、冷却过程状态难